留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从总体设计角度透视高超声速飞行器边界层转捩问题

李志文 袁海涛 黄斌 张增辉 于新源

李志文, 袁海涛, 黄斌, 等. 从总体设计角度透视高超声速飞行器边界层转捩问题[J]. 空气动力学学报, 2021, 39(4): 26−38 doi: 10.7638/kqdlxxb-2020.0061
引用本文: 李志文, 袁海涛, 黄斌, 等. 从总体设计角度透视高超声速飞行器边界层转捩问题[J]. 空气动力学学报, 2021, 39(4): 26−38 doi: 10.7638/kqdlxxb-2020.0061
LI Z W, YUAN H T, HUANG B, et al. The hypersonic boundary-layer transition: a perspective from the view of system design[J]. Acta Aerodynamica Sinica, 2021, 39(4): 26−38 doi: 10.7638/kqdlxxb-2020.0061
Citation: LI Z W, YUAN H T, HUANG B, et al. The hypersonic boundary-layer transition: a perspective from the view of system design[J]. Acta Aerodynamica Sinica, 2021, 39(4): 26−38 doi: 10.7638/kqdlxxb-2020.0061

从总体设计角度透视高超声速飞行器边界层转捩问题

doi: 10.7638/kqdlxxb-2020.0061
详细信息
    作者简介:

    李志文*(1978-),男,湖南永顺人,研究员,研究方向:飞行器总体设计. E-mail:66473583@qq.com

  • 中图分类号: O357.4+1

The hypersonic boundary-layer transition: a perspective from the view of system design

  • 摘要: 边界层转捩对飞行器总体性能影响很大,按照弹道式再入、再入机动、高超声速滑翔、高超声速巡航四类飞行器进行分类,与边界层转捩相关的典型问题可归结为气动力、气动热及掺混效率三类,相应带来飞行稳定性与配平能力、落点散布、防热风险、飞行器减重、推进系统优化等问题。针对边界层转捩控制问题,从总体设计方面可采取弹道设计、翼载荷控制、外形设计、材料选择等措施,推迟或诱发转捩,以达到减阻、减热、掺混等设计目标。总体设计单位应重视开展静音风洞试验,充分利用飞行任务资源积累转捩研究基础数据,努力提高理论分析与预示能力,牵引开发高效、高精度的转捩分析工具。
  • 图  1  边界层转捩的发展过程

    Figure  1.  The development of boundary-layer transition

    图  2  转捩的路径(根据参考文献[30]略作修改)

    Figure  2.  The transition path(Slightly modified based on Ref.[30] )

    图  3  惯性弹头在边界层转捩期间角运动情况[32]

    Figure  3.  The motion of a flight vehicle during the boundary-layer transition[32]

    图  4  高超声速钝体流动特点[43]

    Figure  4.  A sketch of the flow around a hypersonic blunt body[43]

    图  5  X-37B外形[45]

    Figure  5.  The X-37B configuration[45]

    图  6  BFR飞船外形[46]

    Figure  6.  The BFR ship configuration[46]

    图  7  IXV飞行弹道攻角时间历程[52]

    Figure  7.  The time history of the angle-of-attack of the IXV[52]

    图  8  HTV-1外形[40]

    Figure  8.  The HTV-1 configuration[40]

    图  9  航天飞机再入飞行走廊及参考飞行剖面[59]

    Figure  9.  The operational entry corridor and reference drag profile[59]

    图  10  X-43前体迎风面锯齿设计[65]

    Figure  10.  The boundary-layer trips of X-43[65]

    图  11  X-51风洞试验研究的三种前体迎风面锯齿[66]

    Figure  11.  Three types of boundary-layer trips for X-51A wind-tunnel tests[66]

  • [1] RICHARDSON D, JENNINGS G. Falcon HTV-2 suffers telemetry failure [J]. Jane's Missiles & Rockets, 2010, 14(6):16.
    [2] MALENIC M. Flight-test failure for HTV-2 [J]. Jane's Defence Weekly, 2011-08-12.
    [3] 甄华萍, 蒋崇文. 高超声速技术验证飞行器HTV-2综述[J]. 飞航导弹, 2013(6): 7-13. doi: 10.16338/j.issn.1009-1319.2013.06.012

    ZHEN H P, JIANG C W. Overview of hypersonic vehicle HTV-2[J]. Aerodynamic Missile Journal, 2013(6): 7-13. (in Chinese) DOI: 10.16338/j.issn.1009-1319.2013.06.012
    [4] ZALOGA S. US Army conducts first test of advanced hypersonic weapon [J].World Missiles Briefing, 2014.
    [5] CHAMBERLAIN F. Final environmental assessment/overseas environmental assessment for Flight Experiment 1 (FE-1)[R]. U. S. Army Space and Missile Defense Command/Army Forces Strategic Command, 2017.
    [6] HUGHES R. US DoD conducts second common hypersonic glide body test[N/OL]. Jane's Defence News, 2020-03-24. https://www.janes.com/defence-news/news-detail/us-dod-conducts-second-common-hypersonic-glide-body-test.
    [7] BERRY S, KIMMEL R, RESHOTKO E. Recommendations for hypersonic boundary layer transition flight testing[C]//41st AIAA Fluid Dynamics Conference and Exhibit, Honolulu, Hawaii. Reston, Virigina: AIAA, 2011. doi: 10.2514/6.2011-3415
    [8] HUCHEL B. Purdue to develop world’s first Mach 8 quiet wind tunnel[N/OL]. Purdue University News. 2020-02-04. http://www.purdue.edu/newsroom/releases/2020/Q1/purdue-to-worlds-first-mach-8-quiet-wind-tunnel.html.
    [9] 周恒, 赵耕夫. 流动稳定性[M]. 北京: 国防工业出版社, 2004.

    ZHOU H, ZHAO G F. Hydrodynamic stability[M]. Beijing: National Defense Industry Press, 2004. (in Chinese)
    [10] 周恒, 苏彩虹, 张永明. 超声速/高超声速边界层的转捩机理及预测[M]. 北京: 科学出版社, 2015.

    ZHOU H, SU C H, ZHANG Y M. Transition mechanism and prediction of supersonic/hypersonic boundary layer[M]. Beijing: Science Press, 2015. (in Chinese)
    [11] 唐登斌. 边界层转捩[M]. 北京: 科学出版社, 2015.

    TANG D B. Boundary layer transition[M]. Beijing: Science Press, 2015. (in Chinese)
    [12] 刘小林. 高超声速低噪声风洞技术及相关试验研究[D]. 长沙: 国防科学技术大学, 2015.

    LIU X L. The hypersonic low noise wind tunnel technique and relative experimental studies[D]. Changsha: National University of Defense Technology, 2015. (in Chinese)
    [13] 袁先旭, 何琨, 陈坚强, 等. MF-1模型飞行试验转捩结果初步分析[J]. 空气动力学学报, 2018, 36(2): 286-293. doi: 10.7638/kqdlxxb-2018.0050

    YUAN X X, HE K, CHEN J Q, et al. Preliminary transition research analysis of MF-1[J]. Acta Aerodynamica Sinica, 2018, 36(2): 286-293. (in Chinese) doi: 10.7638/kqdlxxb-2018.0050
    [14] LetPub. 国家自然基金项目查询[DB/OL]. 2020-03-20.http://www.letpub.com.cn/index.php?page=grant.
    [15] 解少飞, 杨武兵, 沈清. 高超声速边界层转捩机理及应用的若干进展回顾[J]. 航空学报, 2015, 36(3): 714-723.

    XIE S F, YANG W B, SHEN Q. Review of progresses in hypersonic boundary layer transition mechanism and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 714-723. (in Chinese)
    [16] 苏彩虹. 高超声速边界层转捩预测中的关键科学问题: 感受性、扰动演化及转捩判据研究进展[J]. 空气动力学学报, 2020, 38(2): 355-367. doi: 10.7638/kqdlxxb-2020.0056

    SU C H. Progress in key scientific problems of hypersonic boundary-layer transition prediction: receptivity, evolution of disturbances and transition criterion[J]. Acta Aerodynamica Sinica, 2020, 38(2): 355-367. (in Chinese) doi: 10.7638/kqdlxxb-2020.0056
    [17] 江贤洋, 李存标. 高超声速边界层感受性研究综述[J]. 实验流体力学, 2017, 31(2): 1-11.

    JIANG X Y, LI C B. Review of research on the receptivity of hypersonic boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 1-11. (in Chinese)
    [18] 刘向宏, 赖光伟, 吴杰. 高超声速边界层转捩实验综述[J]. 空气动力学学报, 2018, 36(2): 196-212. doi: 10.7638/kqdlxxb-2018.0017

    LIU X H, LAI G W, WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2): 196-212. (in Chinese) doi: 10.7638/kqdlxxb-2018.0017
    [19] 黄章峰, 万兵兵, 段茂昌. 高超声速流动稳定性及转捩工程应用若干研究进展[J]. 空气动力学学报, 2020, 38(2): 368-378. doi: 10.7638/kqdlxxb-2020.0047

    HUANG Z F, WAN B B, DUAN M C. Progresses in engineering application research on hypersonic flow stability and transition[J]. Acta Aerodynamica Sinica, 2020, 38(2): 368-378. (in Chinese) doi: 10.7638/kqdlxxb-2020.0047
    [20] 段毅, 姚世勇, 李思怡, 等. 高超声速边界层转捩的若干问题及工程应用研究进展综述[J]. 空气动力学学报, 2020, 38(2): 391-403. doi: 10.7638/kqdlxxb-2020.0041

    DUAN Y, YAO S Y, LI S Y, et al. Review of progress in some issues and engineering application of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2020, 38(2): 391-403. (in Chinese) doi: 10.7638/kqdlxxb-2020.0041
    [21] 罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1): 357-372.

    LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357-372. (in Chinese)
    [22] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. doi: 10.7638/kqdlxxb-2017.0030

    CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337. (in Chinese) doi: 10.7638/kqdlxxb-2017.0030
    [23] 杨武兵, 沈清, 朱德华, 等. 高超声速边界层转捩研究现状与趋势[J]. 空气动力学学报, 2018, 36(2): 183-195. doi: 10.7638/kqdlxxb-2018.0011

    YANG W B, SHEN Q, ZHU D H, et al. Tendency and current status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, 36(2): 183-195. (in Chinese) doi: 10.7638/kqdlxxb-2018.0011
    [24] WIE Y S, FAYETTE COLLIER J, WAGNER R, et al. Design of a hybrid laminar flow control nacelle[C]//30th Aerospace Sciences Meeting and Exhibit, Reno, NV. Reston, Virginia: AIAA, 1992. doi: 10.2514/6.1992-400
    [25] CROUCH J. Boundary-layer transition prediction for laminar flow control (invited)[C]//45th AIAA Fluid Dynamics Conference, Dallas, TX. Reston, Virginia: AIAA, 2015. doi: 10.2514/6.2015-2472
    [26] REED H L. Stability and transition analysis for reentry tool, STAR[R]. Defense Technical Information Center, 2005. doi: 10.21236/ada441358
    [27] Dc Defense Science Board Washington. Report of the defense science board task force on the national aerospace plane (NASP)[R]. Defense Technical Information Center, 1988. doi: 10.21236/ada201124
    [28] 周恒.“流动稳定性与转捩”专栏前言[J]. 空气动力学学报, 2018, 36(2): 181-182.

    ZHOU H. Preface of flow stability and transition column[J]. Acta Aerodynamica Sinica, 2018, 36(2): 181-182. (in Chinese)
    [29] 周恒, 张涵信. 有关近空间高超声速飞行器边界层转捩和湍流的两个问题[J]. 空气动力学学报, 2017, 35(2): 151-155. doi: 10.7638/kqdlxxb-2017.0016

    ZHOU H, ZHANG H X. Two problems in the transition and turbulence for near space hypersonic flying vehicles[J]. Acta Aerodynamica Sinica, 2017, 35(2): 151-155. (in Chinese) doi: 10.7638/kqdlxxb-2017.0016
    [30] Morkovin M V. Transition in open flow systems-a reassessment[J]. Bulletin of the American Physical Society, 1994, 39 (9): 1882.
    [31] 余平, 段毅, 尘军. 高超声速飞行的若干气动问题[J]. 航空学报, 2015, 36(1): 7-23.

    YU P, DUAN Y, CHEN J. Some aerodynamic issues in hypersonic flight[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 7-23. (in Chinese)
    [32] UFFELMAN K, DEFFENBAUGH F. Asymmetric transition effects on reentry vehicle trim and dispersion characteristics[C]//Proc of the 5th Atmospheric Flight Mechanics Conference for Future Space Systems, Boulder, CO, USA. Reston, Virigina: AIAA, 1979. doi: 10.2514/6.1979-1626
    [33] 安长发. 非对称转捩对钝锥静稳定性的影响[J]. 空气动力学学报, 1983, 1(1): 100-104.

    AN C F. Influence of asymmetric transition on static stability of blunted cones[J]. Acta Aerodynamica Sinica, 1983, 1(1): 100-104. (in Chinese)
    [34] 潘宏禄, 马汉东, 沈清. 超声速小攻角下的圆锥转捩攻角效应[J]. 空气动力学学报, 2009, 27(1): 97-101. doi: 10.3969/j.issn.0258-1825.2009.01.018

    PAN H L, MA H D, SHEN Q. Attack of angle effect for supersonic blunt cone transition flow[J]. Acta Aerodynamica Sinica, 2009, 27(1): 97-101. (in Chinese) DOI: 10.3969/j.issn.0258-1825.2009.01.018
    [35] 潘宏禄, 马汉东, 王强. 超声速边界层转捩拟序结构大涡模拟[J]. 宇航学报, 2006, 27(3): 498-502. doi: 10.3321/j.issn:1000-1328.2006.03.034

    PAN H L, MA H D, WANG Q. Large eddy simulation of transition coherent structures in a supersonic boundary layer[J]. Journal of Astronautics, 2006, 27(3): 498-502. (in Chinese) DOI: 10.3321/j.issn:1000-1328.2006.03.034
    [36] 杨云军, 沈清, 詹慧玲, 等. 高超声速小钝锥边界层非对称转捩研究[J]. 宇航学报, 2008, 29(1): 34-39. doi: 10.3873/j.issn.1000-1328.2008.01.006

    YANG Y J, SHEN Q, ZHAN H L, et al. Investigation on asymmetric transition about hypersonic boundary layer over a slight blunt cone[J]. Journal of Astronautics, 2008, 29(1): 34-39. (in Chinese) doi: 10.3873/j.issn.1000-1328.2008.01.006
    [37] 楼洪田. 边界层转捩对细长锥静、动稳定性的影响[J]. 宇航学报, 1985, 6(1): 88-98.

    LOU H T. Transition effects of boundary layer on static and dynamic stability of slender cone[J]. Journal of Astronautics, 1985, 6(1): 88-98. (in Chinese)
    [38] 楼洪钿. 细长锥小迎角气动特性的Re效应[J]. 空气动力学学报, 2001, 19(4): 466-470. doi: 10.3969/j.issn.0258-1825.2001.04.017

    LOU H T. Reynolds number effects on slender cone's aerodynamic characteristics at small incidence[J]. Acta Aerodynamica Sinica, 2001, 19(4): 466-470. (in Chinese) doi: 10.3969/j.issn.0258-1825.2001.04.017
    [39] 高清, 李潜, 陈农, 等. 高超声速飞行器非对称转捩对稳定性的影响[J]. 战术导弹技术, 2012(6): 12-15. doi: 10.16358/j.issn.1009-1300.2012.06.008

    GAO Q, LI Q, CHEN N, et al. The influence of asymmetric transition on stability of hypersonic aircrafts[J]. Tactical Missile Technology, 2012(6): 12-15. (in Chinese) DOI: 10.16358/j.issn.1009-1300.2012.06.008
    [40] RESHOTKO E. Transition issues for atmospheric entry[C]//45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virigina: AIAA, 2007. doi: 10.2514/6.2007-304
    [41] 袁湘江, 张涵信, 沈清, 等. 钝体头部大扰动转捩的直接数值模拟[C]//第四届海峡两岸计算流体力学学术研讨会论文集. 2003: 94-100.
    [42] 袁湘江, 张涵信, 沈清. 局部大扰动诱导转捩的物理机理研究[C]//2003空气动力学前沿研究研讨会论文集. 2003: 537-542.
    [43] HORVATH T J, BERRY S A, MERSKI N R. Hypersonic boundary/shear layer transition for blunt to slender configurations-A NASA Langley experimental perspective[R]. RTO-MP-AVT-111, 2004.
    [44] ILIFF K, SHAFER M. A comparison of hypersonic flight and prediction results[C]//31st Aerospace Sciences Meeting, Reno, NV, USA. Reston, Virigina: AIAA, 1993. doi: 10.2514/6.1993-311
    [45] Spacecraft-Defence, United States. X-37B/Orbital Test Vehicle (OTV) [M/OL]. Jane's Space Systems and Industry, 2015-06-02. http://www.janes.com.
    [46] MUSK E. Make_life_multiplanetary-2017[EB/OL]. https://www.spacex.com/media/making_life_multiplanetary-2017.pdf
    [47] BOUSLOG S, AN M, HARTMANN L, et al. Review of boundary layer transition flight data on the Space Shuttle Orbiter[C]// 29th Aerospace Sciences Meeting, Reno, NV, USA. Reston, Virigina: AIAA, 1991. doi: 10.2514/6.1991-741
    [48] AN M, WANG K C, CAMPBELL C, et al. Space shuttle orbiter aerodynamics induced by asymmetric boundary-layer transition[C]//34th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. Reston, Virigina: AIAA, 1996. doi: 10.2514/6.1996-808
    [49] 朱德华, 袁湘江, 杨武兵. 粗糙元诱导的高超声速转捩机理及应用[J]. 航空学报, 2018, 39(1): 68-77.

    ZHU D H, YUAN X J, YANG W B. Mechanism of hypersonic transition induced by a roughness element and its application[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 68-77. (in Chinese)
    [50] 董明. 高超声速边界层中由粗糙元引起强制转捩的机理[J]. 气体物理, 2016, 1(5): 25-38. doi: 10.19527/j.cnki.2096-1642.2016.05.003

    DONG M. Mechanism of roughness-induced transition in hypersonic boundary layers[J]. Physics of Gases, 2016, 1(5): 25-38. (in Chinese) DOI: 10.19527/j.cnki.2096-1642.2016.05.003
    [51] 赵云飞, 刘伟, 冈敦殿, 等. 粗糙物面引起的超声速边界层转捩现象研究[J]. 宇航学报, 2015, 36(6): 739-746. doi: 10.3873/j.issn.1000-1328.2015.06.016

    ZHAO Y F, LIU W, GANG D D, et al. Study of surface roughness induced supersonic boundary layer transition[J]. Journal of Astronautics, 2015, 36(6): 739-746. (in Chinese) doi: 10.3873/j.issn.1000-1328.2015.06.016
    [52] MARCO V, CONTRERAS R, SANCHEZ R, et al. The IXV guidance, navigation and control subsystem: Development, verification and performances[J]. Acta Astronautica, 2016, 124: 53-66. DOI: 10.1016/j.actaastro.2016.04.010
    [53] 易仕和, 刘小林, 牛海波, 等. 高超声速边界层流动稳定性实验研究[J]. 空气动力学学报, 2020, 38(1): 137-142. doi: 10.7638/kqdlxxb-2019.0129

    YI S H, LIU X L, NIU H B, et al. Experimental study on flow stability of hypersonic boundary layer[J]. Acta Aerodynamica Sinica, 2020, 38(1): 137-142. (in Chinese) doi: 10.7638/kqdlxxb-2019.0129
    [54] 赵磊. 高超声速后掠钝板边界层横流定常涡失稳的研究[D]. 天津: 天津大学, 2017.

    ZHAO L. Study on instability of stationary crossflow vortices in hypersonic swept blunt plate boundary layers[D]. Tianjin: Tianjin University, 2017. (in Chinese)
    [55] 韩宇峰, 马绍贤, 苏彩虹. 高超声速三维边界层横流转捩的数值研究[J]. 空气动力学学报, 2019, 37(4): 522-529. doi: 10.7638/kqdlxxb-2019.0015

    HAN Y F, MA S X, SU C H. Numerical study on cross-flow transition in three-dimensional hypersonic boundary layers[J]. Acta Aerodynamica Sinica, 2019, 37(4): 522-529. (in Chinese) doi: 10.7638/kqdlxxb-2019.0015
    [56] 徐国武, 李锋, 龚安龙, 等. 非对称转捩对横向偏离稳定的影响[J]. 宇航学报, 2015, 36(9): 995-1001. doi: 10.3873/j.issn.1000-1328.2015.09.003

    XU G W, LI F, GONG A L, et al. Effect of asymmetric transition on lateral departure stability[J]. Journal of Astronautics, 2015, 36(9): 995-1001. (in Chinese) doi: 10.3873/j.issn.1000-1328.2015.09.003
    [57] 国义军, 曾磊, 张昊元, 等. HTV2第二次飞行试验气动热环境及失效模式分析[J]. 空气动力学学报, 2017, 35(4): 496-503. doi: 10.7638/kqdlxxb-2016.0114

    GUO Y J, ZENG L, ZHANG H Y, et al. Investigation on aerothermodynamic environment and ablation which lead to HTV-2 second fight test failing[J]. Acta Aerodynamica Sinica, 2017, 35(4): 496-503. (in Chinese) doi: 10.7638/kqdlxxb-2016.0114
    [58] [德]希舍尔, 魏兰德. 国防科技精品译丛: 高超声速飞行器气动热力学设计问题精选[M]. 唐志共, 译. 北京: 国防工业出版社, 2013.
    [59] MEASE K D, KREMER J P. Shuttle entry guidance revisited using nonlinear geometric methods[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(6): 1350-1356. DOI: 10.2514/3.21355
    [60] BERRY S A, BERGER K, HORVATH T J. Flight experiment verification of shuttle boundary layer transition prediction tool[C]//46th AIAA Thermophysics Conference, Washington, D. C.. Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-3533
    [61] BERGER K, ANDERSON B, CAMPBELL C, et al. Boundary layer transition flight experiment overview[C]//42nd AIAA Thermophysics Conference, Honolulu, Hawaii. Reston, Virigina: AIAA, 2011. doi: 10.2514/6.2011-3323
    [62] 赵慧勇, 易淼荣. 高超声速进气道强制转捩装置设计综述[J]. 空气动力学学报, 2014, 32(5): 623-627. doi: 10.7638/kqdlxxb-2014.0095

    ZHAO H Y, YI M R. Review of design for forced-transition trip of hypersonic inlet[J]. Acta Aerodynamica Sinica, 2014, 32(5): 623-627. (in Chinese) doi: 10.7638/kqdlxxb-2014.0095
    [63] 赵慧勇, 周瑜, 倪鸿礼, 等. 高超声速进气道边界层强制转捩试验[J]. 实验流体力学, 2012, 26(1): 1-6. doi: 10.3969/j.issn.1672-9897.2012.01.001

    ZHAO H Y, ZHOU Y, NI H L, et al. Test of forced boundary-layer transition on hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 1-6. (in Chinese) doi: 10.3969/j.issn.1672-9897.2012.01.001
    [64] 战培国. 超燃冲压发动机前体边界层转捩风洞试验方法[J]. 航空科学技术, 2012, 23(6): 22-26. doi: 10.3969/j.issn.1007-5453.2012.06.008

    ZHAN P G. Wind tunnel test methods for boundary layer transition on scramjet engine forebody[J]. Aeronautical Science & Technology, 2012, 23(6): 22-26. (in Chinese) doi: 10.3969/j.issn.1007-5453.2012.06.008
    [65] BERRY S, DARYABEIGI K, WURSTER K, et al. Boundary layer transition on X-43A[C]//38th Fluid Dynamics Conference and Exhibit, Seattle, Washington. Reston, Virigina: AIAA, 2008. doi: 10.2514/6.2008-3736
    [66] BORG M, SCHNEIDER S, JULIANO T. Effect of freestream noise on roughness-induced transition for the X-51A forebody[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virigina: AIAA, 2008. doi: 10.2514/6.2008-592
    [67] KIMMEL R. Aspects of hypersonic boundary layer transition control[C]//41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2003. doi: 10.2514/6.2003-772
    [68] STETSON K. Nosetip bluntness effects on cone frustum boundary layer transition in hypersonic flow[C]//16th Fluid and Plasmadynamics Conference, Danvers, MA. Reston, Virginia: AIAA, 1983. doi: 10.2514/6.1983-1763
    [69] 陈坚强, 袁先旭, 涂国华, 等. 高超声速边界层转捩的几点认识[J]. 中国科学 (物理学 力学 天文学), 2019, 49(11): 121-134. doi: 10.1360/SSPMA-2019-0071

    CHEN J Q, YUAN X X, TU G H, et al. Recent progresses on hypersonic boundary-layer transition[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2019, 49(11): 121-134. (in Chinese) DOI: 10.1360/SSPMA-2019-0071
    [70] SPALL R E, MALIK M R. Effect of transverse curvature on the stability of compressible boundary layers[J]. AIAA Journal, 1991, 29(10): 1596-1602. DOI: 10.2514/3.10780
    [71] MALIK M R. Prediction and control of transition in supersonic and hypersonic boundary layers[J]. AIAA Journal, 1989, 27(11): 1487-1493. DOI: 10.2514/3.10292
    [72] ZURIGAT Y H, NAYFEH A H, MASAD J A. Effect of pressure gradient on the stability of compressible boundary layers[J]. AIAA Journal, 1992, 30(9): 2204-2211. DOI: 10.2514/3.11206
    [73] SARIC W, REED H. Crossflow instabilities - theory & technology[C]//Proc of the 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virigina: AIAA, 2003. doi: 10.2514/6.2003-771
    [74] 董昊, 刘是成, 程克明. 粗糙元对高超声速边界层转捩影响的研究进展[J]. 实验流体力学, 2018, 32(6): 1-15.

    DONG H, LIU S C, CHENG K M. Review of hypersonic boundary layer transition induced by roughness elements[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 1-15. (in Chinese)
    [75] FEDOROV A V, MALMUTH N D, RASHEED A, et al. Stabilization of hypersonic boundary layers by porous coatings[J]. AIAA Journal, 2001, 39(4): 605-610. DOI: 10.2514/2.1382
    [76] FEDOROV A, KOZLOV V, SHIPLYUK A, et al. Stability of hypersonic boundary layer on porous wall with regular microstructure[J]. AIAA Journal, 2006, 44(8): 1866-1871. DOI: 10.2514/1.21013
    [77] FEDOROV A, MALMUTH N. Parametric studies of hypersonic laminar flow control using a porous coating of regular microstructure[C]//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virigina: AIAA, 2008. doi: 10.2514/6.2008-588
    [78] 赵瑞, 张新昕, 温志湧, 等. 声学超表面抑制Mack第2模态机理与优化设计[J]. 气体物理, 2018, 3(6): 35-40. doi: 10.19527/j.cnki.2096-1642.2018.06.005

    ZHAO RUI, ZHANG XINXIN, WEN ZHIYONG, et al. Investigation and optimization of acoustic metasurfaces to depress mack second mode in hypersonic boundary-layer flow[J]. Physics of Gases, 2018, 3(6): 35-40. (in Chinese) DOI: 10.19527/j.cnki.2096-1642.2018.06.005.
    [79] ZHAO R, LIU T, WEN C Y, et al. Theoretical modeling and optimization of porous coating for hypersonic laminar flow control[J]. AIAA Journal, 2018, 56(8): 2942-2946. DOI: 10.2514/1.J057272
    [80] 朱德华, 刘智勇, 袁湘江. 多孔表面推迟高超声速边界层转捩的机理[J]. 计算物理, 2016, 33(2): 163-169. doi: 10.19596/j.cnki.1001-246x.2016.02.005

    ZHU D H, LIU Z Y, YUAN X J. Mechanism of transition delay by porous surface in hypersonic boundary layers[J]. Chinese Journal of Computational Physics, 2016, 33(2): 163-169. (in Chinese) DOI: 10.19596/j.cnki.1001-246x.2016.02.005
    [81] 涂国华, 陈坚强, 袁先旭, 等. 多孔表面抑制第二模态失稳的最优开孔率和孔半径分析[J]. 空气动力学学报, 2018, 36(2): 273-278. doi: 10.7638/kqdlxxb-2018.0038

    TU G H, CHEN J Q, YUAN X X, et al. Optimal porosity and pore radius of porous surfaces for damping the second-mode instability[J]. Acta Aerodynamica Sinica, 2018, 36(2): 273-278. (in Chinese) doi: 10.7638/kqdlxxb-2018.0038
    [82] 郭启龙, 涂国华, 陈坚强, 等. 横向矩形微槽对高超边界层失稳的控制作用[J]. 航空动力学报, 2020, 35(1): 135-143. doi: 10.13224/j.cnki.jasp.2020.01.016

    GUO Q L, TU G H, CHEN J Q, et al. Control of hypersonic boundary layer instability by transverse rectangular micro-cavities[J]. Journal of Aerospace Power, 2020, 35(1): 135-143. (in Chinese) DOI: 10.13224/j.cnki.jasp.2020.01.016
    [83] 苏彩虹, 周恒. 零攻角小钝头钝锥高超音速绕流边界层的稳定性分析和转捩预报[J]. 应用数学和力学, 2007, 28(5): 505-513. doi: 10.3321/j.issn:1000-0887.2007.05.001

    SU C H, ZHOU H. Stability analysis and transition prediction of hypersonic boundary layer over a blunt cone with small nose bluntness at zero angle of attack[J]. Applied Mathematics and Mechanics, 2007, 28(5): 505-513. (in Chinese) doi: 10.3321/j.issn:1000-0887.2007.05.001
    [84] LIU Z Y, YANG W B, SHEN Q. Investigation on correlation between wind tunnel and flight test data for boundary layer transition[C]//Proc of the AIAA Flight Testing Conference, Washington, D. C.. Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-3980
    [85] 刘智勇, 禹旻, 杨武兵. 温度对高速平板边界层转捩雷诺数的影响[J]. 空气动力学学报, 2020, 38(2): 308-315.

    LIU Z Y, YU M, YANG W B. Effect of temperature on the transitional Reynolds number of high-speed planar boundary layer[J]. Acta Aerodynamica Sinica, 2020, 38(2): 308-315. (in Chinese)
    [86] BERKOWITZ A, KYRISS C, MARTELLUCCI A. Boundary layer transition flight test observations[C]//Proc of the 15th Aerospace Sciences Meeting, Los Angeles, CA. Reston, Virginia: AIAA, 1977. doi: 10.2514/6.1977-125
    [87] 赵耕夫. 壁面冷却和抽吸对超声速高超声速三维边界层稳定性的影响[J]. 空气动力学学报, 1999, 17(1): 22-30.

    ZHAO G F. Effect of wall suction and cooling on the stability of the supersonic and hypersonic three dimensional boundary layer[J]. Acta Aerodynamica Sinica, 1999, 17(1): 22-30. (in Chinese)
    [88] 赵耕夫. 超音速/高超音速三维边界层的层流控制[J]. 力学学报, 2001, 33(4): 519-524. doi: 10.3321/j.issn:0459-1879.2001.04.010

    ZHAO G F. Laminar flow control of supersonic/hypersonic three-dimensional boundary layer[J]. Acta Mechanica Sinica, 2001, 33(4): 519-524. (in Chinese) doi: 10.3321/j.issn:0459-1879.2001.04.010
    [89] BEIERHOLM A K, LEYVA I, LAURENCE S J, et al. Transition delay in a hypervelocity boundary layer using nonequilibrium CO2 injection[R]. Defense Technical Information Center, 2008. doi: 10.21236/ada503215
    [90] LEYVA I, LAURENCE S, BEIERHOLM A, et al. Transition delay in hypervelocity boundary layers by means of CO2/acoustic instability interactions[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida. Reston, Virginia: AIAA, 2009. doi: 10.2514/6.2009-1287
    [91] LEYVA I, JEWELL J, LAURENCE S, et al. On the impact of injection schemes on transition in hypersonic boundary layers[C]//Proc of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany. Reston, Virginia: AIAA, 2009. doi: 10.2514/6.2009-7204
    [92] WAGNILD R, CANDLER G, LEYVA I, et al. Carbon dioxide injection for hypervelocity boundary layer stability[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida. Reston, Virigina: AIAA, 2010. doi: 10.2514/6.2010-1244
    [93] SHEPHERD J E. Transition delay in hypervelocity boundary layers by means of CO2/acoustic instability interaction[R]. Defense Technical Information Center, 2014. doi: 10.21236/ada619007
    [94] JEWELL J, WAGNILD R, LEYVA I, et al. Transition within a hypervelocity boundary layer on a 5-degree half-angle cone in air/CO2 mixtures[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas. Reston, Virginia: AIAA, 2013. doi: 10.2514/6.2013-523
    [95] FEDOROV A V, SOUDAKOV V, LEYVA I A. Stability analysis of high-speed boundary-layer flow with gas injection[C]//7th AIAA Theoretical Fluid Mechanics Conference, Atlanta, GA. Reston, Virginia: AIAA, 2014. doi: 10.2514/6.2014-2498
    [96] JEWELL J S, LEYVA I A, PARZIALE N J, et al. Effect of gas injection on transition in hypervelocity boundary layers[C]//28th International Symposium on Shock Waves, 2012. doi: 10.1007/978-3-642-25688-2_111
    [97] 孟宣市, 宋科, 龙玥霄, 等. NS-SDBD等离子体流动控制研究现状与展望[J]. 空气动力学学报, 2018, 36(6): 901-916. doi: 10.7638/kqdlxxb-2018.0078

    MENG X S, SONG K, LONG Y X, et al. Airflow control by NS-SDBD plasma actuators[J]. Acta Aerodynamica Sinica, 2018, 36(6): 901-916. (in Chinese) doi: 10.7638/kqdlxxb-2018.0078
    [98] SCHNEIDER S P. Developing mechanism-based methods for estimating hypersonic boundary-layer transition in flight: The role of quiet tunnels[J]. Progress in Aerospace Sciences, 2015, 72: 17-29. DOI: 10.1016/j.paerosci.2014.09.008
    [99] SCHMISSEUR J D. Hypersonics into the 21st century: a perspective on AFOSR-sponsored research in aerothermodynamics[J]. Progress in Aerospace Sciences, 2015, 72: 3-16. DOI: 10.1016/j.paerosci.2014.09.009
    [100] MALIK M R, LI F, CHOUDHAN M. Analysis of crossflow transition flight experiment aboard the Pegasus launch vehicle (Invited)[C]//37th AIAA Fluid Dynamics Conference and Exhibit, 2007.doi: 10.2514/6.2007-4487.
    [101] 涂国华, 万兵兵, 陈坚强, 等. MF-1钝锥边界层稳定性及转捩天地相关性研究[J]. 中国科学: 物理学 力学 天文学, 2019, 49(12): 118-128.

    TU G H, WAN B B, CHEN J Q, et al. Investigation on correlation between wind tunnel and flight for boundary layer stability and transition of MF-1 blunt cone[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(12): 118-128. (in Chinese)
    [102] KUNTZ D W, WILKEN A C, PAYNE J L. Analysis of the photodiode boundary layer transition indicator[R]. Office of Scientific and Technical Information (OSTI), 1994. doi: 10.2172/10124071
    [103] 朱广生, 聂春生, 曹占伟, 等. 气动热环境试验及测量技术研究进展[J]. 实验流体力学, 2019, 33(2): 1-10.

    ZHU G S, NIE C S, CAO Z W, et al. Research progress of aerodynamic thermal environment test and measurement technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 1-10. (in Chinese)
    [104] 于高通, 罗纪生. 三维高超声速边界层中eN方法的应用[J]. 航空动力学报, 2014, 29(9): 2047-2054. doi: 10.13224/j.cnki.jasp.2014.09.005

    YU G T, LUO J S. Application of eN method in three-dimensional hypersonic boundary layers[J]. Journal of Aerospace Power, 2014, 29(9): 2047-2054. (in Chinese) DOI: 10.13224/j.cnki.jasp.2014.09.005
    [105] 黄章峰, 肖凌晨, 罗纪生. 超声速边界层转捩预测eN方法及其软件开发[J]. 空气动力学学报, 2018, 36(2): 279-285. doi: 10.7638/kqdlxxb-2018.0023

    HUANG Z F, XIAO L C, LUO J S. Transition prediction eN method and its software development for supersonic boundary layers[J]. Acta Aerodynamica Sinica, 2018, 36(2): 279-285. (in Chinese) doi: 10.7638/kqdlxxb-2018.0023
    [106] 宋文萍, 吴猛猛, 朱震, 等. 面向层流减阻设计的转捩预测方法研究[J]. 空气动力学学报, 2018, 36(2): 213-228. doi: 10.7638/kqdlxxb-2018.0035

    SONG W P, WU M M, ZHU Z, et al. Transition prediction methods towards significant drag reduction via laminar flow technology[J]. Acta Aerodynamica Sinica, 2018, 36(2): 213-228. (in Chinese) doi: 10.7638/kqdlxxb-2018.0035
    [107] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7): 2579-2593. DOI: 10.2514/1.J056661
  • 加载中
图(11)
计量
  • 文章访问数:  560
  • HTML全文浏览量:  773
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-03
  • 修回日期:  2020-07-01
  • 录用日期:  2020-08-21
  • 网络出版日期:  2020-11-10
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回