留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速飞行器主动质量引射热防护技术研究进展

沈斌贤 曾磊 刘骁 周述光 葛强

沈斌贤, 曾磊, 刘骁, 等. 高超声速飞行器主动质量引射热防护技术研究进展[J]. 空气动力学学报, 2022, 40(6): 1−13 doi: 10.7638/kqdlxxb-2021.0185
引用本文: 沈斌贤, 曾磊, 刘骁, 等. 高超声速飞行器主动质量引射热防护技术研究进展[J]. 空气动力学学报, 2022, 40(6): 1−13 doi: 10.7638/kqdlxxb-2021.0185
SHEN B X, ZENG L, LIU X, et al. Research progress of thermal protection technique by activemass injection for hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2022, 40(6): 1−13 doi: 10.7638/kqdlxxb-2021.0185
Citation: SHEN B X, ZENG L, LIU X, et al. Research progress of thermal protection technique by activemass injection for hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2022, 40(6): 1−13 doi: 10.7638/kqdlxxb-2021.0185

高超声速飞行器主动质量引射热防护技术研究进展

doi: 10.7638/kqdlxxb-2021.0185
基金项目: 国家重点研发计划资助项目(2019YFA0405202);国家数值风洞工程(NNW)
详细信息
    作者简介:

    沈斌贤(1990-),男,湖南浏阳人,助理研究员,研究方向:飞行器热防护. E-mail:shenbinxian_1603@163.com

    通讯作者:

    曾磊*(1981-),副研究员,研究方向:高超声速飞行器热安全. E-mail:ZengleiOok@163.com

  • 中图分类号: V435+.14

Research progress of thermal protection technique by activemass injection for hypersonic vehicle

  • 摘要: 质量引射式热防护是解决未来长时间高超声速飞行器热防护问题的重要方案之一。本文介绍了发汗冷却、气膜冷却、逆向射流三种典型的主动质量引射热防护技术的作用机理,从冷却剂注入方式、流场特征及冷却效率三个方面比较了三种方案的特点。从应用的角度分析了三种方案现阶段的局限性,介绍了几种能够弥补各自缺陷的组合方案。最后从多场耦合分析方法、引射结构设计及优化、热防护系统的优化及效能评估三个方面对质量引射热防护的进一步发展提出展望。
  • 图  1  发汗冷却原理示意图

    Figure  1.  Cooling principle of transpiration

    图  2  相变模拟数值计算试验对比图[16]

    Figure  2.  Comparison between numerical and experimental results in phase change[16]

    图  3  液态水发汗冷却结冰现象[24]

    Figure  3.  Ice beard in transpiration test[24]

    图  4  SHEFEX Ⅱ发汗冷却试验飞行器模型[21]

    Figure  4.  Vehicle model of transpiration in SHEFEX Ⅱ[21]

    图  5  气膜冷却原理示意图[25]

    Figure  5.  Cooling principle of film cooling[25]

    图  6  气膜冷却试验流场结构图[31]

    Figure  6.  Flowfield of film cooling in wind tunnel test[31]

    图  7  钝头体非驻点区域气膜热流分布图[34]

    Figure  7.  Heat flux distributions of film cooling in non-stagnation region[34]

    图  8  逆向射流流场结构示意图[37]

    Figure  8.  Flowfield structure of opposing jet[37]

    图  9  逆向射流LPM与SPM结构对比图[41]

    Figure  9.  Comparisons between LPM and SPM in opposing jet[41]

    图  10  Hayashi逆向射流试验热流分布和流体结构图[37]

    Figure  10.  Heat flux distributions and flowfield in Hayashi’s experiments[37]

    图  11  三种热防护方式对比

    Figure  11.  Comparisons of three typical mass injection in mode of injection and characteristics of flow field

    图  12  发汗冷却与气膜冷却注入结构对比[47-48]

    Figure  12.  Comparisons of transpiration and film cooling in injection structures[47-48]

    图  13  典型气膜冷却与逆向射流流场对比图[50]

    Figure  13.  Comparisons of flow field between film cooling and opposing jet[50]

    图  14  不均匀热流典型温度场及流场分布[13]

    Figure  14.  Distributions of temperature and flow-field with non-uniform heat flux[13]

    图  15  气膜-发汗双层组合冷却结构[63]

    Figure  15.  Double layer combined film and transpiration cooling structure[63]

    图  16  双层组合冷却结构温度分布[63]

    Figure  16.  Temperature distributions in double layer cooling structure[63]

    图  17  发汗-气膜组合冷却结构[66]

    Figure  17.  Combined transpiration and film cooling structure[66]

    图  18  发汗-气膜组合冷却结构冷却效率分布[64]

    Figure  18.  Cooling efficiency distributions in combined transpiration and film cooling structure[64]

    图  19  逆向射流-凹腔组合冷却结构[67]

    Figure  19.  Combined opposing jet and cavity cooling structure[67]

    图  20  激波针-气膜组合冷却结构[69]

    Figure  20.  Combined spike and film cooling structure[69]

    图  21  凹腔-发汗组合冷却结构[70]

    Figure  21.  Combined cavity and transpiration cooling structure[70]

  • [1] 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报, 2010, 31(5): 1259-1265. doi: 10.3873/j.issn.1000-1328.2010.05.001

    HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(5): 1259-1265. (in Chinese) doi: 10.3873/j.issn.1000-1328.2010.05.001
    [2] 桂业伟, 刘磊, 魏东. 长航时高超声速飞行器的综合热效应问题[J]. 空气动力学学报, 2020, 38(4): 641-650. doi: 10.7638/kqdlxxb-2020.0078

    GUI Y W, LIU L, WEI D. Combined thermal phenomena issues of long endurance hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2020, 38(4): 641-650. (in Chinese) doi: 10.7638/kqdlxxb-2020.0078
    [3] 国义军, 石卫波, 曾磊. 高超声速飞行器烧蚀防热理论与应用[M]. 北京: 科学出版社, 2019.

    GUO Y J, SHI W B, ZENG L. Mechanism of ablative thermal protection applied to hypersonic vehicles[M]. Beijing: Science Press, 2019 (in Chinese).
    [4] LI K, LIU J, LIU W Q. Thermal protection performance of magnetohydrodynamic heat shield system based on multipolar magnetic field[J]. Acta Astronautica, 2017, 136: 248-258. DOI: 10.1016/j.actaastro.2017.02.011
    [5] 艾邦成, 陈思员, 韩海涛, 等. 复杂构型前缘疏导热防护技术[J]. 气体物理, 2019, 4( 1) : 1-7.

    AI B C, CHEN S Y, HAN H T, et al. Complex dredging thermal protection structure for leading edge[J]. Physics of Gases, 2019, 4(1): 1-7. (in Chinese)
    [6] 周伟江, 姜贵庆. 高超声速流中局部构件上质量引射的热防护特性研究[J]. 航空学报, 1999, 20(3): 193-196. doi: 10.3321/j.issn:1000-6893.1999.03.001

    ZHOU W J, JIANG G Q. Study of heating protection features by mass injection over the local structure in a hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(3): 193-196. (in Chinese) doi: 10.3321/j.issn:1000-6893.1999.03.001
    [7] ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1929-1953. DOI: 10.1016/j.cja.2018.06.011
    [8] 邓帆, 谢峰, 黄伟, 等. 逆向喷流技术在高超声速飞行器上的应用[J]. 空气动力学报, 2017, 35(4): 485-495. doi: 10.7638/kqdlxxb-2017.0057

    DENG F, XIE F, HUANG W, et al. Applications of counterflowing jet technology in hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2027, 35(4): 485-495. (in Chinese) doi: 10.7638/kqdlxxb-2017.0057
    [9] 洪长青, 张幸红, 韩杰才, 等. 热防护用发汗冷却技术的研究进展(Ⅰ): 冷却方式分类、发汗冷却材料及其基本理论模型[J]. 宇航材料工艺, 2005, 35(6): 7-12. doi: 10.3969/j.issn.1007-2330.2005.06.002

    HONG C Q, ZHANG X H, HAN J C, et al. Research on technology of transpiration cooling in thermal protection system (Ⅰ) category of cooling methods, transpiration cooling materials and their basal theoretical models[J]. Aerospace Materials & Technology, 2005, 35(6): 7-12. (in Chinese) doi: 10.3969/j.issn.1007-2330.2005.06.002
    [10] 陈宝明, 刘芳, 云和明. 多孔介质自然对流传热传质[M]. 北京: 科学出版社, 2016.

    CHEN B M, LIU F, YUN H M. Natural convective heat and mass transfer in porous media[M]. Beijing: Science Press, 2016 (in Chinese).
    [11] BLUBAUGH A L, LABOTZ R J, ZISK E J. Liquid rocket demonstration of an advanced transpiration—cooled thrust chamber[R]. AD 380029, 1967.
    [12] 姜培学, 任泽霈, 张左, 等. 液体火箭发动机推力室发汗冷却传热过程的数值模拟(Ⅰ)数理模型[J]. 推进技术, 1999, 20(3): 1-4. doi: 10.3321/j.issn:1001-4055.1999.03.001

    JIANG PEIXUE, REN ZEPEI, ZHANG Z, et al. Numerical simulation of heat transfer in transpiration cooled liquid rocket thruster chamber(Ⅰ) physical-mathematical model[J]. Journal of Propulsion Technology, 1999, 20(3): 1-4. (in Chinese)DOI:10.3321/j.issn: 1001-4055.1999.03.001
    [13] 胥睿娜, 李晓阳, 廖致远, 等. 航天飞行器热防护相变发汗冷却研究进展[J/OL]. 清华大学学报(自然科学版)[2020-11-18]. https://kns.cnki.net/kcms/detail/11.2223.N.20201118.0847.002.html

    XU R N, LI X Y, LIAO Z Y, et al. Research progress in transpiration cooling with phase chang[J/OL]. J Tsinghua Univ(Sci&Technol) [2020-11-18]. https://kns.cnki.net/kcms/detail/11.2223.N.20201118.0847.002.html
    [14] DONG W J, WANG J H, CHEN S Y, et al. Modelling and investigation on heat transfer deterioration during transpiration cooling with liquid coolant phase-change[J]. Applied Thermal Engineering, 2018, 128: 381-392. DOI: 10.1016/j.applthermaleng.2017.08.155
    [15] SU H, WANG J H, HE F, et al. Numerical investigation on transpiration cooling with coolant phase change under hypersonic conditions[J]. International Journal of Heat and Mass Transfer, 2019, 129: 480-490. DOI: 10.1016/j.ijheatmasstransfer.2018.09.123
    [16] HU H W, JIANG P X, OUYANG X L, et al. A modified energy equation model for flow boiling in porous media and its application to transpiration cooling at low pressures with transient effect[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119745. DOI: 10.1016/j.ijheatmasstransfer.2020.119745
    [17] ECKERT E R G, LIVINGOOD J N B. Comparison of effectiveness of convection- , transpiration-, and film-cooling methods with air as coolant[R]. National Advisory Committee for Aeronautics, 1954, 1182.
    [18] KAYS W M, CRAWFORD M E, WEIGAND B. Convective heat and mass transfer[M]. New York: McGraw-Hill Book Company, 1966.
    [19] BÖHRK H, PIOL O, KUHN M. Heat balance of a transpiration-cooled heat shield[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(3): 581-588. DOI: 10.2514/1.47172
    [20] BOEHRK H, WARTEMANN V, EGGERS T, et al. Shock tube testing of the transpiration-cooled heat shield experiment AKTiV[C]// 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Tours, France. Reston, Virginia: AIAA, 2012. doi: 10.2514/6.2012-5935
    [21] BOEHRK H. Transpiration cooling at hypersonic flight - AKTiV on SHEFEXII[C]// 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Atlanta, GA: AIAA 2014-2676, 2014.
    [22] 丁锐. 发散冷却在高超声速飞行器上的应用可行性研究[D]. 合肥: 中国科学技术大学, 2020.

    DING R. Investigations on the application feasibility of transpiration cooling on hypersonic vehicles[D]. Hefei: University of Science and Technology of China, 2020 (in Chinese).
    [23] XIAO X F, ZHAO G B, ZHOU W X, et al. Large-eddy simulation of transpiration cooling in turbulent channel with porous wall[J]. Applied Thermal Engineering, 2018, 145: 618-629. DOI: 10.1016/j.applthermaleng.2018.09.056
    [24] VAN FOREEST A, GÜLHAN A, ESSER B, et al. Transpiration cooling using liquid water[C]// Thermophysics Conference. American Institute of Aeronautics and Astronautics (AIAA), 2009: 693-702.
    [25] 向树红, 商圣飞, 沈自才, 等. 高超声速气膜冷却技术研究进展及发展方向[J]. 宇航材料工艺, 2020, 50(3): 1-10. doi: 10.12044/j.issn.1007-2330.2020.03.001

    XIANG S H, SHANG S F, SHEN Z C, et al. Research progress and development direction of hypersonic film cooling technology[J]. Aerospace Materials & Technology, 2020, 50(3): 1-10. (in Chinese) doi: 10.12044/j.issn.1007-2330.2020.03.001
    [26] ZHANG J Z, ZHANG S C, WANG C H, et al. Recent advances in film cooling enhancement: a review[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1119-1136. DOI: 10.1016/j.cja.2019.12.023
    [27] YANG X B, BADCOCK K, RICHARDS B, et al. A numerical study of hypersonic turbulent film cooling[C]// 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2005. doi: 10.2514/6.2005-386
    [28] KIM S M, LEE K D, KIM K Y. A comparative analysis of various shaped film-cooling holes[J]. Heat and Mass Transfer, 2012, 48(11): 1929-1939. DOI: 10.1007/s00231-012-1043-5
    [29] PUDSEY A, BOYCE R, WHEATLEY V. Hypersonic viscous drag reduction via multi-porthole injector arrays[C]// 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Tours, France. Reston, Virginia: AIAA, 2012. doi: 10.2514/6.2012-5934
    [30] 侯伟涛, 乔渭阳, 罗华龄. 气膜冷却对激波与边界层相互作用影响的数值模拟[J]. 推进技术, 2009, 30(5): 555-560. doi: 10.3321/j.issn:1001-4055.2009.05.009

    HOU W T, QIAO W Y, LUO H L. Numerical simulation of effects of film-cooling on interaction between shock wave and boundary layer[J]. Journal of Propulsion Technology, 2009, 30(5): 555-560. (in Chinese) doi: 10.3321/j.issn:1001-4055.2009.05.009
    [31] SRIRAM R, JAGADEESH G. Film cooling at hypersonic Mach numbers using forward facing array of micro-jets[J]. International Journal of Heat and Mass Transfer, 2009, 52(15-16): 3654-3664. DOI: 10.1016/j.ijheatmasstransfer.2009.02.035
    [32] BARZEGAR GERDROODBARY M, IMANI M, GANJI D D. Investigation of film cooling on nose cone by a forward facing array of micro-jets in Hypersonic flow[J]. International Communications in Heat and Mass Transfer, 2015, 64: 42-49. DOI: 10.1016/j.icheatmasstransfer.2015.02.015
    [33] SAHOO N, KULKARNI V, SARAVANAN S, et al. Film cooling effectiveness on a large angle blunt cone flying at hypersonic speed[J]. Physics of Fluids, 2005, 17(3): 036102. DOI: 10.1063/1.1862261
    [34] ASO S, MIYAMOTO Y, KUROTAKI T, et al. Experimental and computational study on reduction of aerodynamic heating load by film cooling in hypersonic flows[C]// 35th Aerospace Sciences Meeting and Exhibit, Reno, NV. Reston, Virginia: AIAA, 1997. doi: 10.2514/6.1997-770
    [35] SHEN B X, LIU W Q. Insulating and absorbing heat of transpiration in a combinational opposing jet and platelet transpiration blunt body for hypersonic vehicle[J]. International Journal of Heat and Mass Transfer, 2019: 314–325
    [36] WARREN C H E. An experimental investigation of the effect of ejecting a coolant gas at the nose of a bluff body[J]. Journal of Fluid Mechanics, 1960, 8(3): 400. DOI: 10.1017/s0022112060000694
    [37] HAYASHI K, ASO S, TANI Y. Numerical study of thermal protection system by opposing jet[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2005. doi: 10.2514/6.2005-188
    [38] FUJITA M. Axisymmetric oscillations of an opposing jet from a hemispherical nose[J]. AIAA Journal, 1995, 33(10): 1850-1856. DOI: 10.2514/3.12801
    [39] ZHOU C Y, JI W Y, XIE P. Numerical investigation on the drag and heat flux reduction of a supersonic reentry capsule with a counter-flow jet[J]. Information Technology Journal, 2012, 11(12): 1705-1713. DOI: 10.3923/itj.2012.1705.1713
    [40] CHEN L W, WANG G L, LU X Y. Numerical investigation of a jet from a blunt body opposing a supersonic flow[J]. Journal of Fluid Mechanics, 2011, 684: 85-110. DOI: 10.1017/jfm.2011.276
    [41] VENKATACHARI B S, ITO Y, CHENG G, et al. Numerical investigation of the interaction of counterflowing jets and supersonic capsule flows[C]// 42nd AIAA Thermophysics Conference, Honolulu, Hawaii. Reston, Virginia: AIAA, 2011. doi: 10.2514/6.2011-4030
    [42] HUANG W, ZHANG R R, YAN L, et al. Numerical experiment on the flow field properties of a blunted body with a counterflowing jet in supersonic flows[J]. Acta Astronautica, 2018, 147: 231-240. DOI: 10.1016/j.actaastro.2018.04.018
    [43] RONG Y S. Drag reduction research in supersonic flow with opposing jet[J]. Acta Astronautica, 2013, 91: 1-7. DOI: 10.1016/j.actaastro.2013.04.015
    [44] LIU H P, WANG Z G. Fluid-thermal-structural coupling investigations of opposing jet in hypersonic flows[J]. International Communications in Heat and Mass Transfer, 2021, 120: 105017. DOI: 10.1016/j.icheatmasstransfer.2020.105017
    [45] ROMEO D J, STERRETT J R, CHENG G. Effect of counterflow jet on a supersonic reentry mainstream[J]. AIAA Journal, 1965, 3(3): 544-546. doi: 10.2514/3.2907
    [46] LI S B, WANG Z G, BARAKOS G N, et al. Research on the drag reduction performance induced by the counterflowing jet for waverider with variable blunt radii[J]. Acta Astronautica, 2016, 127: 120-130. DOI: 10.1016/j.actaastro.2016.05.031
    [47] SHEN L, WANG J H, DONG W J, et al. An experimental investigation on transpiration cooling with phase change under supersonic condition[J]. Applied Thermal Engineering, 2016, 105: 549-556. DOI: 10.1016/j.applthermaleng.2016.03.039
    [48] RONG Y S, WEI Y C, ZHAN R J. Research on thermal protection by opposing jet and transpiration for high speed vehicle[J]. Aerospace Science and Technology, 2016, 48: 322-327. DOI: 10.1016/j.ast.2015.11.014
    [49] CAMILLO G P, WAGNER A, DITTERT C, et al. Experimental investigation of the effect of transpiration cooling on second mode instabilities in a hypersonic boundary layer[J]. Experiments in Fluids, 2020, 61(7): 1-19. DOI: 10.1007/s00348-020-02994-8
    [50] SHEN B X, LIU W Q. Thermal protection performance of a low pressure short penetration mode in opposing jet and its application[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120466. DOI: 10.1016/j.ijheatmasstransfer.2020.120466
    [51] 金韶山. 液体火箭发动机推力室及钝体头锥发汗冷却研究[D]. 北京: 清华大学, 2008.

    JIN S S. Research on transpiration cooling of liquid rocket thrust chamber and blunt nose cone[D]. Beijing: Tsinghua University, 2008 (in Chinese).
    [52] CHOI S, SCOTTI S, SONG K, et al. Transpiring cooling of a scram-jet engine combustion chamber[C]// 32nd Thermophysics Conference, Atlanta, GA. Reston, Virginia: AIAA, 1997. doi: 10.2514/6.1997-2576
    [53] HUANG G, ZHU Y H, LIAO Z Y, et al. Experimental investigation of transpiration cooling with phase change for sintered porous plates[J]. International Journal of Heat and Mass Transfer, 2017, 114: 1201-1213. DOI: 10.1016/j.ijheatmasstransfer.2017.05.114
    [54] REIMER T, KUHN M, GÜLHAN A, et al. Transpiration cooling tests of porous CMC in hypersonic flow[C]// 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California. Reston, Virigina: AIAA, 2011. doi: 10.2514/6.2011-2251
    [55] 孟丽燕, 姜培学, 蒋方帅, 等. 孔隙及热流的非均匀性对发散冷却的影响[J]. 清华大学学报(自然科学版), 2006, 46(2): 230-233. DOI: 10.16511/j.cnki.qhdxxb.2006.02.019

    MENG L Y, JIANG P X, JIANG F S, et al. Influence of porosity and heat flux nonuniformities on transpiration cooling[J]. Journal of Tsinghua University (Science and Technology), 2006, 46(2): 230-233. (in Chinese) doi: 10.16511/j.cnki.qhdxxb.2006.02.019
    [56] ZHAO L J, WANG J H, MA J, et al. An experimental investigation on transpiration cooling under supersonic condition using a nose cone model[J]. International Journal of Thermal Sciences, 2014, 84: 207-213. DOI: 10.1016/j.ijthermalsci.2014.05.019
    [57] WU N, WANG J H, HE F, et al. Optimization transpiration cooling of nose cone with non-uniform permeability[J]. International Journal of Heat and Mass Transfer, 2018, 127: 882-891. DOI: 10.1016/j.ijheatmasstransfer.2018.07.134
    [58] MODLIN J M, COLWELL G T. Surface cooling of scramjet engine inlets using heat pipe, transpiration, and film cooling[J]. Journal of Thermophysics and Heat Transfer, 1992, 6(3): 500-504. DOI: 10.2514/3.388
    [59] 耿湘人, 桂业伟, 王安龄, 等. 利用二维平面和轴对称逆向喷流减阻和降低热流的计算研究[J]. 空气动力学学报, 2006, 24(1): 85-89. doi: 10.3969/j.issn.0258-1825.2006.01.016

    GENG X R, GUI Y W, WANG A L, et al. Numerical investigation on drag and heat-transfer reduction using 2-D planar and axisymmetrical forward facing jet[J]. Acta Aerodynamica Sinica, 2006, 24(1): 85-89. (in Chinese) doi: 10.3969/j.issn.0258-1825.2006.01.016
    [60] LU H B, LIU W Q. Numerical investigation on properties of attack angle for an opposing jet thermal protection system[J]. Chinese Physics B, 2012, 21(8): 084401. DOI: 10.1088/1674-1056/21/8/084401
    [61] SHEN B X, LIU H P, LIU W Q. Influence of angle of attack on a combined opposing jet and platelet transpiration cooling blunt nose in hypersonic vehicle[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(9): 761-769. DOI: 10.1631/jzus.A1900514
    [62] DING R, WANG J H, HE F, et al. Numerical investigation on the performances of porous matrix with transpiration and film cooling[J]. Applied Thermal Engineering, 2019, 146: 422-431. DOI: 10.1016/j.applthermaleng.2018.09.134
    [63] DING R, WANG J H, HE F, et al. Numerical investigation on a double layer combined cooling structure for aerodynamic heat control of hypersonic vehicle leading edge[J]. Applied Thermal Engineering, 2020, 169: 114949. DOI: 10.1016/j.applthermaleng.2020.114949
    [64] JIANG P X, HUANG G, ZHU Y H, et al. Experimental investigation of combined transpiration and film cooling for sintered metal porous struts[J]. International Journal of Heat and Mass Transfer, 2017, 108: 232-243. DOI: 10.1016/j.ijheatmasstransfer.2016.12.014
    [65] HUANG G, ZHU Y H, HUANG Z, et al. Investigation of combined transpiration and opposing jet cooling of sintered metal porous struts[J]. Heat Transfer Engineering, 2018, 39(7-8): 711-723. DOI: 10.1080/01457632.2017.1325693
    [66] 黄干. 高温与超声速条件下单相及相变发汗冷却规律研究[D]. 北京: 清华大学, 2018.

    HUANG G. Research on the single-phased and phase-changed transpiration cooling in supersonic and high temperature flow[D]. Beijing: Tsinghua University, 2018 (in Chinese).
    [67] 陆海波, 刘伟强. 迎风凹腔与逆向喷流组合热防护系统冷却效果研究[J]. 物理学报, 2012, 61(6): 372-377.

    LU H B, LIU W Q. Cooling efficiency investigation of forward-facing cavity and opposing jet combinatorial thermal protection system[J]. Acta Physica Sinica, 2012, 61(6): 372-377. (in Chinese)
    [68] 耿云飞, 阎超. 联合激波针-逆向喷流方法的新概念研究[J]. 空气动力学学报, 2010, 28(4): 436-440. doi: 10.3969/j.issn.0258-1825.2010.04.013

    GENG Y F, YAN C. Numerical investigation on drag and heat-transfer reduction using combined spike and forward facing jet method[J]. Acta Aerodynamica Sinica, 2010, 28(4): 436-440. (in Chinese) doi: 10.3969/j.issn.0258-1825.2010.04.013
    [69] JIANG Z L, LIU Y F, HAN G L. Conceptual study on non-ablative TPS for hypersonic vehicles[C]// 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California. Reston, Virginia: AIAA, 2011. doi: 10.2514/6.2011-2372
    [70] 栾芸, 贺菲, 王建华. 飞行器鼻锥凹腔-发散组合冷却数值模拟[J]. 航空学报, 2021, 42(2): 623937. doi: 10.7527/S1000-6893.2020.23937

    LUAN Y, HE F, WANG J H. Transpiration cooling of nose-cone with forward-facing cavity: Numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 623937. (in Chinese) doi: 10.7527/S1000-6893.2020.23937
    [71] WRIGHT M J, CANDLER G V, BOSE D. Data-parallel line relaxation method for the Navier-Stokes equations[J]. AIAA Journal, 1998, 36: 1603-1609. DOI: 10.2514/3.14012
    [72] HERMANN T A, MCGILVRAY M, IFTI H S, et al. Fluid-solid heat exchange in porous media for transpiration cooling systems[C]// AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-0537
    [73] 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7): 87-105. doi: 10.7527/S1000-6893.2016.0310

    GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 87-105. (in Chinese) doi: 10.7527/S1000-6893.2016.0310
  • 加载中
图(21)
计量
  • 文章访问数:  829
  • HTML全文浏览量:  514
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-05
  • 修回日期:  2021-09-16
  • 录用日期:  2021-09-22
  • 网络出版日期:  2021-11-20
  • 刊出日期:  2022-12-26

目录

    /

    返回文章
    返回