[1] |
黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报, 2010, 31(5): 1259-1265. doi: 10.3873/j.issn.1000-1328.2010.05.001HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(5): 1259-1265. (in Chinese) doi: 10.3873/j.issn.1000-1328.2010.05.001
|
[2] |
桂业伟, 刘磊, 魏东. 长航时高超声速飞行器的综合热效应问题[J]. 空气动力学学报, 2020, 38(4): 641-650. doi: 10.7638/kqdlxxb-2020.0078GUI Y W, LIU L, WEI D. Combined thermal phenomena issues of long endurance hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2020, 38(4): 641-650. (in Chinese) doi: 10.7638/kqdlxxb-2020.0078
|
[3] |
国义军, 石卫波, 曾磊. 高超声速飞行器烧蚀防热理论与应用[M]. 北京: 科学出版社, 2019.GUO Y J, SHI W B, ZENG L. Mechanism of ablative thermal protection applied to hypersonic vehicles[M]. Beijing: Science Press, 2019 (in Chinese).
|
[4] |
LI K, LIU J, LIU W Q. Thermal protection performance of magnetohydrodynamic heat shield system based on multipolar magnetic field[J]. Acta Astronautica, 2017, 136: 248-258. DOI: 10.1016/j.actaastro.2017.02.011
|
[5] |
艾邦成, 陈思员, 韩海涛, 等. 复杂构型前缘疏导热防护技术[J]. 气体物理, 2019, 4( 1) : 1-7.AI B C, CHEN S Y, HAN H T, et al. Complex dredging thermal protection structure for leading edge[J]. Physics of Gases, 2019, 4(1): 1-7. (in Chinese)
|
[6] |
周伟江, 姜贵庆. 高超声速流中局部构件上质量引射的热防护特性研究[J]. 航空学报, 1999, 20(3): 193-196. doi: 10.3321/j.issn:1000-6893.1999.03.001ZHOU W J, JIANG G Q. Study of heating protection features by mass injection over the local structure in a hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(3): 193-196. (in Chinese) doi: 10.3321/j.issn:1000-6893.1999.03.001
|
[7] |
ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1929-1953. DOI: 10.1016/j.cja.2018.06.011
|
[8] |
邓帆, 谢峰, 黄伟, 等. 逆向喷流技术在高超声速飞行器上的应用[J]. 空气动力学报, 2017, 35(4): 485-495. doi: 10.7638/kqdlxxb-2017.0057DENG F, XIE F, HUANG W, et al. Applications of counterflowing jet technology in hypersonic vehicle[J]. Acta Aerodynamica Sinica, 2027, 35(4): 485-495. (in Chinese) doi: 10.7638/kqdlxxb-2017.0057
|
[9] |
洪长青, 张幸红, 韩杰才, 等. 热防护用发汗冷却技术的研究进展(Ⅰ): 冷却方式分类、发汗冷却材料及其基本理论模型[J]. 宇航材料工艺, 2005, 35(6): 7-12. doi: 10.3969/j.issn.1007-2330.2005.06.002HONG C Q, ZHANG X H, HAN J C, et al. Research on technology of transpiration cooling in thermal protection system (Ⅰ) category of cooling methods, transpiration cooling materials and their basal theoretical models[J]. Aerospace Materials & Technology, 2005, 35(6): 7-12. (in Chinese) doi: 10.3969/j.issn.1007-2330.2005.06.002
|
[10] |
陈宝明, 刘芳, 云和明. 多孔介质自然对流传热传质[M]. 北京: 科学出版社, 2016.CHEN B M, LIU F, YUN H M. Natural convective heat and mass transfer in porous media[M]. Beijing: Science Press, 2016 (in Chinese).
|
[11] |
BLUBAUGH A L, LABOTZ R J, ZISK E J. Liquid rocket demonstration of an advanced transpiration—cooled thrust chamber[R]. AD 380029, 1967.
|
[12] |
姜培学, 任泽霈, 张左, 等. 液体火箭发动机推力室发汗冷却传热过程的数值模拟(Ⅰ)数理模型[J]. 推进技术, 1999, 20(3): 1-4. doi: 10.3321/j.issn:1001-4055.1999.03.001JIANG PEIXUE, REN ZEPEI, ZHANG Z, et al. Numerical simulation of heat transfer in transpiration cooled liquid rocket thruster chamber(Ⅰ) physical-mathematical model[J]. Journal of Propulsion Technology, 1999, 20(3): 1-4. (in Chinese)DOI:10.3321/j.issn: 1001-4055.1999.03.001
|
[13] |
胥睿娜, 李晓阳, 廖致远, 等. 航天飞行器热防护相变发汗冷却研究进展[J/OL]. 清华大学学报(自然科学版)[2020-11-18]. https://kns.cnki.net/kcms/detail/11.2223.N.20201118.0847.002.htmlXU R N, LI X Y, LIAO Z Y, et al. Research progress in transpiration cooling with phase chang[J/OL]. J Tsinghua Univ(Sci&Technol) [2020-11-18]. https://kns.cnki.net/kcms/detail/11.2223.N.20201118.0847.002.html
|
[14] |
DONG W J, WANG J H, CHEN S Y, et al. Modelling and investigation on heat transfer deterioration during transpiration cooling with liquid coolant phase-change[J]. Applied Thermal Engineering, 2018, 128: 381-392. DOI: 10.1016/j.applthermaleng.2017.08.155
|
[15] |
SU H, WANG J H, HE F, et al. Numerical investigation on transpiration cooling with coolant phase change under hypersonic conditions[J]. International Journal of Heat and Mass Transfer, 2019, 129: 480-490. DOI: 10.1016/j.ijheatmasstransfer.2018.09.123
|
[16] |
HU H W, JIANG P X, OUYANG X L, et al. A modified energy equation model for flow boiling in porous media and its application to transpiration cooling at low pressures with transient effect[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119745. DOI: 10.1016/j.ijheatmasstransfer.2020.119745
|
[17] |
ECKERT E R G, LIVINGOOD J N B. Comparison of effectiveness of convection- , transpiration-, and film-cooling methods with air as coolant[R]. National Advisory Committee for Aeronautics, 1954, 1182.
|
[18] |
KAYS W M, CRAWFORD M E, WEIGAND B. Convective heat and mass transfer[M]. New York: McGraw-Hill Book Company, 1966.
|
[19] |
BÖHRK H, PIOL O, KUHN M. Heat balance of a transpiration-cooled heat shield[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(3): 581-588. DOI: 10.2514/1.47172
|
[20] |
BOEHRK H, WARTEMANN V, EGGERS T, et al. Shock tube testing of the transpiration-cooled heat shield experiment AKTiV[C]// 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Tours, France. Reston, Virginia: AIAA, 2012. doi: 10.2514/6.2012-5935
|
[21] |
BOEHRK H. Transpiration cooling at hypersonic flight - AKTiV on SHEFEXII[C]// 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Atlanta, GA: AIAA 2014-2676, 2014.
|
[22] |
丁锐. 发散冷却在高超声速飞行器上的应用可行性研究[D]. 合肥: 中国科学技术大学, 2020.DING R. Investigations on the application feasibility of transpiration cooling on hypersonic vehicles[D]. Hefei: University of Science and Technology of China, 2020 (in Chinese).
|
[23] |
XIAO X F, ZHAO G B, ZHOU W X, et al. Large-eddy simulation of transpiration cooling in turbulent channel with porous wall[J]. Applied Thermal Engineering, 2018, 145: 618-629. DOI: 10.1016/j.applthermaleng.2018.09.056
|
[24] |
VAN FOREEST A, GÜLHAN A, ESSER B, et al. Transpiration cooling using liquid water[C]// Thermophysics Conference. American Institute of Aeronautics and Astronautics (AIAA), 2009: 693-702.
|
[25] |
向树红, 商圣飞, 沈自才, 等. 高超声速气膜冷却技术研究进展及发展方向[J]. 宇航材料工艺, 2020, 50(3): 1-10. doi: 10.12044/j.issn.1007-2330.2020.03.001XIANG S H, SHANG S F, SHEN Z C, et al. Research progress and development direction of hypersonic film cooling technology[J]. Aerospace Materials & Technology, 2020, 50(3): 1-10. (in Chinese) doi: 10.12044/j.issn.1007-2330.2020.03.001
|
[26] |
ZHANG J Z, ZHANG S C, WANG C H, et al. Recent advances in film cooling enhancement: a review[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1119-1136. DOI: 10.1016/j.cja.2019.12.023
|
[27] |
YANG X B, BADCOCK K, RICHARDS B, et al. A numerical study of hypersonic turbulent film cooling[C]// 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2005. doi: 10.2514/6.2005-386
|
[28] |
KIM S M, LEE K D, KIM K Y. A comparative analysis of various shaped film-cooling holes[J]. Heat and Mass Transfer, 2012, 48(11): 1929-1939. DOI: 10.1007/s00231-012-1043-5
|
[29] |
PUDSEY A, BOYCE R, WHEATLEY V. Hypersonic viscous drag reduction via multi-porthole injector arrays[C]// 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Tours, France. Reston, Virginia: AIAA, 2012. doi: 10.2514/6.2012-5934
|
[30] |
侯伟涛, 乔渭阳, 罗华龄. 气膜冷却对激波与边界层相互作用影响的数值模拟[J]. 推进技术, 2009, 30(5): 555-560. doi: 10.3321/j.issn:1001-4055.2009.05.009HOU W T, QIAO W Y, LUO H L. Numerical simulation of effects of film-cooling on interaction between shock wave and boundary layer[J]. Journal of Propulsion Technology, 2009, 30(5): 555-560. (in Chinese) doi: 10.3321/j.issn:1001-4055.2009.05.009
|
[31] |
SRIRAM R, JAGADEESH G. Film cooling at hypersonic Mach numbers using forward facing array of micro-jets[J]. International Journal of Heat and Mass Transfer, 2009, 52(15-16): 3654-3664. DOI: 10.1016/j.ijheatmasstransfer.2009.02.035
|
[32] |
BARZEGAR GERDROODBARY M, IMANI M, GANJI D D. Investigation of film cooling on nose cone by a forward facing array of micro-jets in Hypersonic flow[J]. International Communications in Heat and Mass Transfer, 2015, 64: 42-49. DOI: 10.1016/j.icheatmasstransfer.2015.02.015
|
[33] |
SAHOO N, KULKARNI V, SARAVANAN S, et al. Film cooling effectiveness on a large angle blunt cone flying at hypersonic speed[J]. Physics of Fluids, 2005, 17(3): 036102. DOI: 10.1063/1.1862261
|
[34] |
ASO S, MIYAMOTO Y, KUROTAKI T, et al. Experimental and computational study on reduction of aerodynamic heating load by film cooling in hypersonic flows[C]// 35th Aerospace Sciences Meeting and Exhibit, Reno, NV. Reston, Virginia: AIAA, 1997. doi: 10.2514/6.1997-770
|
[35] |
SHEN B X, LIU W Q. Insulating and absorbing heat of transpiration in a combinational opposing jet and platelet transpiration blunt body for hypersonic vehicle[J]. International Journal of Heat and Mass Transfer, 2019: 314–325
|
[36] |
WARREN C H E. An experimental investigation of the effect of ejecting a coolant gas at the nose of a bluff body[J]. Journal of Fluid Mechanics, 1960, 8(3): 400. DOI: 10.1017/s0022112060000694
|
[37] |
HAYASHI K, ASO S, TANI Y. Numerical study of thermal protection system by opposing jet[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2005. doi: 10.2514/6.2005-188
|
[38] |
FUJITA M. Axisymmetric oscillations of an opposing jet from a hemispherical nose[J]. AIAA Journal, 1995, 33(10): 1850-1856. DOI: 10.2514/3.12801
|
[39] |
ZHOU C Y, JI W Y, XIE P. Numerical investigation on the drag and heat flux reduction of a supersonic reentry capsule with a counter-flow jet[J]. Information Technology Journal, 2012, 11(12): 1705-1713. DOI: 10.3923/itj.2012.1705.1713
|
[40] |
CHEN L W, WANG G L, LU X Y. Numerical investigation of a jet from a blunt body opposing a supersonic flow[J]. Journal of Fluid Mechanics, 2011, 684: 85-110. DOI: 10.1017/jfm.2011.276
|
[41] |
VENKATACHARI B S, ITO Y, CHENG G, et al. Numerical investigation of the interaction of counterflowing jets and supersonic capsule flows[C]// 42nd AIAA Thermophysics Conference, Honolulu, Hawaii. Reston, Virginia: AIAA, 2011. doi: 10.2514/6.2011-4030
|
[42] |
HUANG W, ZHANG R R, YAN L, et al. Numerical experiment on the flow field properties of a blunted body with a counterflowing jet in supersonic flows[J]. Acta Astronautica, 2018, 147: 231-240. DOI: 10.1016/j.actaastro.2018.04.018
|
[43] |
RONG Y S. Drag reduction research in supersonic flow with opposing jet[J]. Acta Astronautica, 2013, 91: 1-7. DOI: 10.1016/j.actaastro.2013.04.015
|
[44] |
LIU H P, WANG Z G. Fluid-thermal-structural coupling investigations of opposing jet in hypersonic flows[J]. International Communications in Heat and Mass Transfer, 2021, 120: 105017. DOI: 10.1016/j.icheatmasstransfer.2020.105017
|
[45] |
ROMEO D J, STERRETT J R, CHENG G. Effect of counterflow jet on a supersonic reentry mainstream[J]. AIAA Journal, 1965, 3(3): 544-546. doi: 10.2514/3.2907
|
[46] |
LI S B, WANG Z G, BARAKOS G N, et al. Research on the drag reduction performance induced by the counterflowing jet for waverider with variable blunt radii[J]. Acta Astronautica, 2016, 127: 120-130. DOI: 10.1016/j.actaastro.2016.05.031
|
[47] |
SHEN L, WANG J H, DONG W J, et al. An experimental investigation on transpiration cooling with phase change under supersonic condition[J]. Applied Thermal Engineering, 2016, 105: 549-556. DOI: 10.1016/j.applthermaleng.2016.03.039
|
[48] |
RONG Y S, WEI Y C, ZHAN R J. Research on thermal protection by opposing jet and transpiration for high speed vehicle[J]. Aerospace Science and Technology, 2016, 48: 322-327. DOI: 10.1016/j.ast.2015.11.014
|
[49] |
CAMILLO G P, WAGNER A, DITTERT C, et al. Experimental investigation of the effect of transpiration cooling on second mode instabilities in a hypersonic boundary layer[J]. Experiments in Fluids, 2020, 61(7): 1-19. DOI: 10.1007/s00348-020-02994-8
|
[50] |
SHEN B X, LIU W Q. Thermal protection performance of a low pressure short penetration mode in opposing jet and its application[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120466. DOI: 10.1016/j.ijheatmasstransfer.2020.120466
|
[51] |
金韶山. 液体火箭发动机推力室及钝体头锥发汗冷却研究[D]. 北京: 清华大学, 2008.JIN S S. Research on transpiration cooling of liquid rocket thrust chamber and blunt nose cone[D]. Beijing: Tsinghua University, 2008 (in Chinese).
|
[52] |
CHOI S, SCOTTI S, SONG K, et al. Transpiring cooling of a scram-jet engine combustion chamber[C]// 32nd Thermophysics Conference, Atlanta, GA. Reston, Virginia: AIAA, 1997. doi: 10.2514/6.1997-2576
|
[53] |
HUANG G, ZHU Y H, LIAO Z Y, et al. Experimental investigation of transpiration cooling with phase change for sintered porous plates[J]. International Journal of Heat and Mass Transfer, 2017, 114: 1201-1213. DOI: 10.1016/j.ijheatmasstransfer.2017.05.114
|
[54] |
REIMER T, KUHN M, GÜLHAN A, et al. Transpiration cooling tests of porous CMC in hypersonic flow[C]// 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California. Reston, Virigina: AIAA, 2011. doi: 10.2514/6.2011-2251
|
[55] |
孟丽燕, 姜培学, 蒋方帅, 等. 孔隙及热流的非均匀性对发散冷却的影响[J]. 清华大学学报(自然科学版), 2006, 46(2): 230-233. DOI: 10.16511/j.cnki.qhdxxb.2006.02.019MENG L Y, JIANG P X, JIANG F S, et al. Influence of porosity and heat flux nonuniformities on transpiration cooling[J]. Journal of Tsinghua University (Science and Technology), 2006, 46(2): 230-233. (in Chinese) doi: 10.16511/j.cnki.qhdxxb.2006.02.019
|
[56] |
ZHAO L J, WANG J H, MA J, et al. An experimental investigation on transpiration cooling under supersonic condition using a nose cone model[J]. International Journal of Thermal Sciences, 2014, 84: 207-213. DOI: 10.1016/j.ijthermalsci.2014.05.019
|
[57] |
WU N, WANG J H, HE F, et al. Optimization transpiration cooling of nose cone with non-uniform permeability[J]. International Journal of Heat and Mass Transfer, 2018, 127: 882-891. DOI: 10.1016/j.ijheatmasstransfer.2018.07.134
|
[58] |
MODLIN J M, COLWELL G T. Surface cooling of scramjet engine inlets using heat pipe, transpiration, and film cooling[J]. Journal of Thermophysics and Heat Transfer, 1992, 6(3): 500-504. DOI: 10.2514/3.388
|
[59] |
耿湘人, 桂业伟, 王安龄, 等. 利用二维平面和轴对称逆向喷流减阻和降低热流的计算研究[J]. 空气动力学学报, 2006, 24(1): 85-89. doi: 10.3969/j.issn.0258-1825.2006.01.016GENG X R, GUI Y W, WANG A L, et al. Numerical investigation on drag and heat-transfer reduction using 2-D planar and axisymmetrical forward facing jet[J]. Acta Aerodynamica Sinica, 2006, 24(1): 85-89. (in Chinese) doi: 10.3969/j.issn.0258-1825.2006.01.016
|
[60] |
LU H B, LIU W Q. Numerical investigation on properties of attack angle for an opposing jet thermal protection system[J]. Chinese Physics B, 2012, 21(8): 084401. DOI: 10.1088/1674-1056/21/8/084401
|
[61] |
SHEN B X, LIU H P, LIU W Q. Influence of angle of attack on a combined opposing jet and platelet transpiration cooling blunt nose in hypersonic vehicle[J]. Journal of Zhejiang University-SCIENCE A, 2020, 21(9): 761-769. DOI: 10.1631/jzus.A1900514
|
[62] |
DING R, WANG J H, HE F, et al. Numerical investigation on the performances of porous matrix with transpiration and film cooling[J]. Applied Thermal Engineering, 2019, 146: 422-431. DOI: 10.1016/j.applthermaleng.2018.09.134
|
[63] |
DING R, WANG J H, HE F, et al. Numerical investigation on a double layer combined cooling structure for aerodynamic heat control of hypersonic vehicle leading edge[J]. Applied Thermal Engineering, 2020, 169: 114949. DOI: 10.1016/j.applthermaleng.2020.114949
|
[64] |
JIANG P X, HUANG G, ZHU Y H, et al. Experimental investigation of combined transpiration and film cooling for sintered metal porous struts[J]. International Journal of Heat and Mass Transfer, 2017, 108: 232-243. DOI: 10.1016/j.ijheatmasstransfer.2016.12.014
|
[65] |
HUANG G, ZHU Y H, HUANG Z, et al. Investigation of combined transpiration and opposing jet cooling of sintered metal porous struts[J]. Heat Transfer Engineering, 2018, 39(7-8): 711-723. DOI: 10.1080/01457632.2017.1325693
|
[66] |
黄干. 高温与超声速条件下单相及相变发汗冷却规律研究[D]. 北京: 清华大学, 2018.HUANG G. Research on the single-phased and phase-changed transpiration cooling in supersonic and high temperature flow[D]. Beijing: Tsinghua University, 2018 (in Chinese).
|
[67] |
陆海波, 刘伟强. 迎风凹腔与逆向喷流组合热防护系统冷却效果研究[J]. 物理学报, 2012, 61(6): 372-377.LU H B, LIU W Q. Cooling efficiency investigation of forward-facing cavity and opposing jet combinatorial thermal protection system[J]. Acta Physica Sinica, 2012, 61(6): 372-377. (in Chinese)
|
[68] |
耿云飞, 阎超. 联合激波针-逆向喷流方法的新概念研究[J]. 空气动力学学报, 2010, 28(4): 436-440. doi: 10.3969/j.issn.0258-1825.2010.04.013GENG Y F, YAN C. Numerical investigation on drag and heat-transfer reduction using combined spike and forward facing jet method[J]. Acta Aerodynamica Sinica, 2010, 28(4): 436-440. (in Chinese) doi: 10.3969/j.issn.0258-1825.2010.04.013
|
[69] |
JIANG Z L, LIU Y F, HAN G L. Conceptual study on non-ablative TPS for hypersonic vehicles[C]// 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California. Reston, Virginia: AIAA, 2011. doi: 10.2514/6.2011-2372
|
[70] |
栾芸, 贺菲, 王建华. 飞行器鼻锥凹腔-发散组合冷却数值模拟[J]. 航空学报, 2021, 42(2): 623937. doi: 10.7527/S1000-6893.2020.23937LUAN Y, HE F, WANG J H. Transpiration cooling of nose-cone with forward-facing cavity: Numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 623937. (in Chinese) doi: 10.7527/S1000-6893.2020.23937
|
[71] |
WRIGHT M J, CANDLER G V, BOSE D. Data-parallel line relaxation method for the Navier-Stokes equations[J]. AIAA Journal, 1998, 36: 1603-1609. DOI: 10.2514/3.14012
|
[72] |
HERMANN T A, MCGILVRAY M, IFTI H S, et al. Fluid-solid heat exchange in porous media for transpiration cooling systems[C]// AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019. doi: 10.2514/6.2019-0537
|
[73] |
桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7): 87-105. doi: 10.7527/S1000-6893.2016.0310GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 87-105. (in Chinese) doi: 10.7527/S1000-6893.2016.0310
|