留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中央开槽箱梁颤振非线性特性和振动分叉现象及其机理

钱程 朱乐东 朱青

钱程, 朱乐东, 朱青. 中央开槽箱梁颤振非线性特性和振动分叉现象及其机理[J]. 空气动力学学报, 2023, 41(2): 98−109 doi: 10.7638/kqdlxxb-2021.0302
引用本文: 钱程, 朱乐东, 朱青. 中央开槽箱梁颤振非线性特性和振动分叉现象及其机理[J]. 空气动力学学报, 2023, 41(2): 98−109 doi: 10.7638/kqdlxxb-2021.0302
QIAN C, ZHU L D, ZHU Q. Nonlinear characteristics of flutter and vibration bifurcation phenomenon of a centrally-slotted box deck and their mechanisms[J]. Acta Aerodynamica Sinica, 2023, 41(2): 98−109 doi: 10.7638/kqdlxxb-2021.0302
Citation: QIAN C, ZHU L D, ZHU Q. Nonlinear characteristics of flutter and vibration bifurcation phenomenon of a centrally-slotted box deck and their mechanisms[J]. Acta Aerodynamica Sinica, 2023, 41(2): 98−109 doi: 10.7638/kqdlxxb-2021.0302

中央开槽箱梁颤振非线性特性和振动分叉现象及其机理

doi: 10.7638/kqdlxxb-2021.0302
基金项目: 国家自然科学基金重点项目(51938012);土木工程防灾国家重点实验室自主研究课题基金团队重点课题(SLDRCE19-A-15)
详细信息
    作者简介:

    钱程(1994-),男,安徽人,博士研究生,研究方向:桥梁抗风. E-mail:1610259@tongji.edu.cn

    通讯作者:

    朱乐东*(1965-),男,博士,研究员,研究方向:桥梁和结构抗风. E-mail:ledong@tongji.edu.cn

  • 中图分类号: U441+.3;V211.3

Nonlinear characteristics of flutter and vibration bifurcation phenomenon of a centrally-slotted box deck and their mechanisms

  • 摘要: 为探究超大跨度缆索承重桥梁在大攻角范围内的颤振稳定性,通过节段模型风洞试验对中央开槽箱梁在风攻角±10°范围内的颤振非线性特性和振动分叉现象及其机理进行了研究。结果显示:当风攻角为−2°~10°时,节段模型系统未发生颤振;当风攻角为−3°和−4°时,观察到了含振动分叉的非线性颤振现象,且起振幅值随风速的增加而减小;当风攻角为−5°~−10°时,颤振无需人工激励就会自动发生。两种非线性颤振均为弯扭耦合颤振,并最终做极限环振动。非线性颤振的起振风速随着负攻角的增大而减小,耦合程度随着折减风速的增加而增加。系统等效阻尼比-振幅曲线可以很好地解释非线性颤振机理,曲线的零点为系统平衡点,其中斜率为正的零点为稳定平衡点,对应稳态振幅;斜率为负的零点为不稳定平衡点,对应起振振幅。对于含振动分叉的非线性颤振,系统存在一个稳定平衡点和一个不稳定平衡点;而对于无需人工初始激励的非线性颤振,系统只有一个稳定平衡点。
  • 图  1  中央开槽箱梁示意图(单位:mm)

    Figure  1.  Diagram of centrally-slotted box bridge deck (unit: mm)

    图  2  节段模型风洞试验装置

    Figure  2.  Segment model in the wind tunnel test

    图  3  非线性颤振时的位移($\alpha_0 = -5^\circ, U^* = 7.33$

    Figure  3.  Displacement of the nonlinear flutter ( $\alpha_0 = -5^\circ, U^* = 7.33$ )

    图  4  非线性颤振时位移相图($\alpha_0 = -5^\circ, U^* = 7.33$

    Figure  4.  Phase diagram of the nonlinear flutter ( $\alpha_0 = -5^\circ, U^* = 7.33$ )

    图  5  非线性颤振时的扭转位移($\alpha_0 = -5^\circ, U^* = 7.33$

    Figure  5.  Torsional displacement of the nonlinear flutter( $\alpha_0 = -5^\circ, U^* = 7.33$ )

    图  6  非线性颤振时的扭转相图($\alpha_0 = -5^\circ, U^* = 7.33$

    Figure  6.  Torsional phase diagram of the nonlinear flutter ( $\alpha_0 = -5^\circ, U^* = 7.33$ )

    图  7  稳态振幅随折减风速的变化

    Figure  7.  Steady-state amplitudes variation with the reduced wind speed

    图  8  稳态频率随折减风速的变化

    Figure  8.  Steady-state frequency variation with the reduced wind speed

    图  9  分叉振动前的扭转位移($\alpha_0= -4^\circ, U^* = 8.75$

    Figure  9.  Torsional displacement before the bifurcation vibration ( $\alpha_0 = -4^\circ, U^* = 8.75$ )

    图  10  分叉振动前的扭转相图 ( $\alpha_0 = -4^\circ, U^* = 8.75$ )

    Figure  10.  Torsional phase diagram before the bifurcation vibration ( $\alpha_0 = -4^\circ, U^* = 8.75$ )

    图  11  分叉振动初期的扭转位移($\alpha_0 = -4^\circ, U^* = 9.04$

    Figure  11.  Torsional displacement at the initial stage of the bifurcation vibration ( $\alpha_0 = -4^\circ, U^* = 9.04$ )

    图  12  分叉振动初期的扭转相图($\alpha_0 = -4^\circ, U^* = 9.04$

    Figure  12.  Torsional phase diagram at the initial stage of the bifurcation vibration ( $\alpha_0 = -4^\circ, U^* = 9.04$ )

    图  13  分叉振动末期的扭转位移($\alpha_0 = -4^\circ, U^* = 9.53$

    Figure  13.  Torsional displacement at the final stage of the bifurcation vibration ( $\alpha_0 = -4^\circ, U^* = 9.53$ )

    图  14  分叉振动末期的扭转相图($\alpha_0 = -4^\circ, U^* = 9.53$

    Figure  14.  Torsional phase diagram at the final stage of the bifurcation vibration ( $\alpha_0 = -4^\circ, U^* = 9.53$ )

    图  15  分叉振动区间后的扭转位移($\alpha_0 = -4^\circ, U^* = 9.80$

    Figure  15.  Torsional displacement after the bifurcation vibration ( $\alpha_0 = -4^\circ, U^* = 9.80$ )

    图  16  分叉振动区间后的扭转相图($\alpha_0 = -4^\circ, U^* = 9.80$

    Figure  16.  Torsional phase diagram after the bifurcation vibration ( $\alpha_0 = -4^\circ, U^* = 9.80$ )

    图  17  非线性自限幅颤振起振振幅和稳态振幅随折减风速变化

    Figure  17.  Steady-state amplitude and onset amplitude variations with the reduced wind speed in the nonlinear self-limiting flutter

    图  18  非线性颤振的偏心率均值随折算风速变化

    Figure  18.  Mean eccentricity ratio variation with the reduced wind speed in the nonlinear flutter

    图  19  非线性颤振起始风速和对应偏心率均值随风攻角变化

    Figure  19.  Onset wind speed and corresponding mean eccentricity ratio variations with the wind attack angle in the nonlinear flutter

    图  20  扭转振幅拟合结果( $\alpha_0 = -5^{\circ}, U^* = 7.33$ )

    Figure  20.  Fitted result of the torsional amplitude( $ \alpha_0 = -5^{\circ}, U^* = 7.33 $ )

    图  21  对数振幅拟合结果( $\alpha_0 = -5^\circ, U^* = 7.33$ )

    Figure  21.  Fitted result of the logarithmic amplitude( $\alpha_0 = -5^\circ, U^* = 7.33$ )

    图  22  系统等效阻尼比拟合结果($\alpha_0 = -5^\circ, U^* = 7.33$

    Figure  22.  Fitted result of the system equivalent damping ratio ( $ \alpha_0 = -5°, U^* = 7.33 $)

    图  23  系统等效阻尼比随扭转振幅变化曲线($\alpha_0 = -5^\circ$

    Figure  23.  System equivalent damping ratio variation with the torsional amplitude ( $\alpha_0 = -5^\circ$ )

    图  24  系统等效阻尼比随扭转振幅变化曲线($\alpha_0 = -4^\circ$

    Figure  24.  System damping ratio variation with the torsional amplitude ( $\alpha_0 = -4^\circ$ )

    图  25  气动阻尼比随扭转振幅变化($\alpha_0 = -5^\circ$

    Figure  25.  Aerodynamic damping ratio variation with the torsional amplitude ( $\alpha_0 = -5^\circ$ )

    图  26  气动阻尼比随扭转振幅变化曲线($\alpha_0 = -4^\circ$

    Figure  26.  Aerodynamic damping ratio variation with the torsional amplitude ( $\alpha_0 = -4^\circ$ )

  • [1] SCANLAN R H, TOMKO J J. Airfoil and bridge deck flutter derivatives[J]. Journal of the Engineering Mechanics Division, 1971, 97(6): 1717-1737. DOI: 10.1061/jmcea3.0001526
    [2] 刘磊, 管青海, 李加武, 等. 基于能量等效原理的颤振机理及颤振导数识别[J]. 空气动力学学报, 2020, 38(2): 224-231. doi: 10.7638/kqdlxxb-2018.0118

    LIU L, GUAN Q H, LI J W, et al. Study on flutter mechanism and identification of flutter derivatives based on energy equivalence[J]. Acta Aerodynamica Sinica, 2020, 38(2): 224-231. (in Chinese) doi: 10.7638/kqdlxxb-2018.0118
    [3] GAO G Z, ZHU L D, LI J W, et al. A novel two-degree-of-freedom model of nonlinear self-excited force for coupled flutter instability of bridge decks[J]. Journal of Sound and Vibration, 2020, 480: 115406. DOI: 10.1016/j.jsv.2020.115406
    [4] 朱乐东, 高广中. 双边肋桥梁断面软颤振非线性自激力模型[J]. 振动与冲击, 2016, 35(21): 29-35.

    ZHU L D, GAO G Z. A nonlinear self-excited force model for soft flutter phenomenon of a twin-side-girder bridge section[J]. Journal of Vibration and Shock, 2016, 35(21): 29-35. (in Chinese)
    [5] DAITO Y, MATSUMOTO M, ARAKI K. Torsional flutter mechanism of two-edge girders for long-span cable-stayed bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15): 2127-2141. DOI: 10.1016/S0167-6105(02)00329-X
    [6] 许福友, 陈艾荣. 印尼Suramadu大桥颤振试验与颤振分析[J]. 土木工程学报, 2009, 42(1): 35-40. doi: 10.3321/j.issn:1000-131X.2009.01.006

    XU F Y, CHEN A R. Flutter test and analysis for the Suramadu Bridge in Indonesia[J]. China Civil Engineering Journal, 2009, 42(1): 35-40. (in Chinese) doi: 10.3321/j.issn:1000-131X.2009.01.006
    [7] MATSUMOTO M, SHIRATO H, HIRAI S. Torsional flutter mechanism of 2-D H-shaped cylinders and effect of flow turbulence[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 41(1-3): 687-698. DOI: 10.1016/0167-6105(92)90480-X
    [8] TANG Y, HUA X G, CHEN Z Q, et al. Experimental investigation of flutter characteristics of shallow Π section at post-critical regime[J]. Journal of Fluids and Structures, 2019, 88: 275-291. DOI: 10.1016/j.jfluidstructs.2019.05.010
    [9] KUBO Y, SADASHIMA K, YAMAGUCHI E, et al. Improvement of aeroelastic instability of shallow π section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14-15): 1445-1457. DOI: 10.1016/S0167-6105(01)00151-9
    [10] . 郑史雄, 郭俊峰, 朱进波, 等. П型断面主梁软颤振特性及抑制措施研究[J]. 西南交通大学学报, 2017, 52(03): 458-65. doi: 10.3969/j.issn.0258-2724.2017.03.004

    ZHENG S X, GUO J F, ZHU J B, et al. Characteristics and suppression measures for soft flutter of main girder with П-shaped cross section[J]. Journal of Southwest Jiaotong University, 2017, 52(03): 458-65. ( in chinese ) doi: 10.3969/j.issn.0258-2724.2017.03.004
    [11] 方根深, 杨詠昕, 葛耀君. 大跨度桥梁PK箱梁断面颤振性能研究[J]. 振动与冲击, 2018, 37(9): 25-31, 60.

    FANG G S, YANG Y X, GE Y J. Flutter performance of PK section girders for long-span bridges[J]. Journal of Vibration and Shock, 2018, 37(9): 25-31, 60. (in Chinese)
    [12] GAO G Z, ZHU L D, WANG F, et al. Experimental investigation on the nonlinear coupled flutter motion of a typical flat closed-box bridge deck[J]. Sensors, 2020, 20(2): 568. DOI: 10.3390/s20020568
    [13] ZHANG M J, XU F Y, ZHANG Z B, et al. Energy budget analysis and engineering modeling of post-flutter limit cycle oscillation of a bridge deck[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 188: 410-420. DOI: 10.1016/j.jweia.2019.03.010
    [14] 朱乐东, 高广中. 典型桥梁断面软颤振现象及影响因素[J]. 同济大学学报(自然科学版), 2015, 43(9): 1289-1294, 1382. doi: 10.11908/j.issn.0253-374x.2015.09.001

    ZHU L D, GAO G Z. Influential factors of soft flutter phenomenon for typical bridge deck sections[J]. Journal of Tongji University (Natural Science), 2015, 43(9): 1289-1294, 1382. (in Chinese) doi: 10.11908/j.issn.0253-374x.2015.09.001
    [15] AMANDOLESE X, MICHELIN S, CHOQUEL M. Low speed flutter and limit cycle oscillations of a two-degree-of-freedom flat plate in a wind tunnel[J]. Journal of Fluids and Structures, 2013, 43: 244-255. DOI: 10.1016/j.jfluidstructs.2013.09.002
    [16] 伍波, 王骑, 廖海黎. 扁平箱梁颤振后状态的振幅依存性研究[J]. 中国公路学报, 2019, 32(10): 96-106.

    WU B, WANG Q, LIAO H L. Characteristics of amplitude dependence of a flat box girder in a post-flutter state[J]. China Journal of Highway and Transport, 2019, 32(10): 96-106. (in Chinese)
    [17] WU B, WANG Q, LIAO H L, et al. Hysteresis response of nonlinear flutter of a truss girder: experimental investigations and theoretical predictions[J]. Computers & Structures, 2020, 238: 106267. DOI: 10.1016/j.compstruc.2020.106267
    [18] LARSEN A. Aerodynamic aspects of the final design of the 1624 m suspension bridge across the Great Belt[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 48(2-3): 261-285. DOI: 10.1016/0167-6105(93)90141-A
    [19] LARSEN A, SAVAGE M, LAFRENIÈRE A, et al. Investigation of vortex response of a twin box bridge section at high and low Reynolds numbers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6-7): 934-944. DOI: 10.1016/j.jweia.2007.06.020
    [20] 张宏杰, 朱乐东, 胡晓红. 超千米级斜拉桥抗风稳定性风洞试验[J]. 中国公路学报, 2014, 27(4): 62-68. doi: 10.3969/j.issn.1001-7372.2014.04.009

    ZHANG H J, ZHU L D, HU X H. Wind tunnel test on wind-resistant stability of super-kilometer cable stayed bridge[J]. China Journal of Highway and Transport, 2014, 27(4): 62-68. (in Chinese) doi: 10.3969/j.issn.1001-7372.2014.04.009
    [21] . ZHU L D, ZHU Q, SHEN Y K, et al. Performance and aerodynamic control measures of wind-induced instability of long-span cable-stayed bridges with main spans over 1000m. Proceedings of 4th Hong Kong Wind Engineering Society Workshop (HKWES4); 2020; Hong Kong, China.
    [22] 朱乐东, 朱青, 郭震山. 风致静力扭角对桥梁颤振性能影响的节段模型试验研究[J]. 振动与冲击, 2011, 30(5): 23-26, 31. doi: 10.3969/j.issn.1000-3835.2011.05.005

    ZHU L D, ZHU Q, GUO Z S. Effect of wind-induced static torsional angle on flutter performance of bridges via sectional model test[J]. Journal of Vibration and Shock, 2011, 30(5): 23-26, 31. (in Chinese) doi: 10.3969/j.issn.1000-3835.2011.05.005
  • 加载中
图(26)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  49
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 录用日期:  2022-03-09
  • 修回日期:  2022-02-20
  • 网络出版日期:  2022-05-20
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回