Influence of slot geometry configuration on airfoil aerodynamic characteristics
-
摘要: 为了深入研究翼型开缝这种抑制翼型吸力面流动分离的被动流动控制技术,对NACA4421翼型开展了数值研究。在探讨了开缝依据的基础上,设计了7种缝道构型,并给出了缝道构型之间的几何联系,对比分析了曲线、折线及直线三种形式的缝道对翼型失速的控制效果,发现曲线缝道能够显著提高翼型的最大升力系数和失速迎角;分析了曲线缝道构型升力系数“双峰”现象的机理,提出了一种新型导流片缝道构型,该构型利用“科恩达效应”能够全面改善基准翼型的失速特性,失速迎角推迟可达14°,最大升力系数提高122%,达到2.785。本文所提出的导流片缝道,是一种新型的缝道构型,为增升装置设计提供了一种思路和参考。Abstract: Airfoil slotted is a passive flow control technology that can effectively inhibit flow separation on the airfoil suction surface, and it has been widely studied by researchers domestically and abroad. In this study, slots on the airfoil NACA4421 are investigated with numerical simulations. The selection of the slot location on the airfoil is first analyzed, and the influence of the geometry change of the slot on the stall characteristics of the airfoil is discussed. Seven slot configurations are designed, and the geometric relations among them are given. The flow control effects of slots with curve lines, polylines and straight lines, on the airfoil stall are compared. It is found that the curve-line slot can significantly improve the maximum lift coefficient and the stall angle of attack of the airfoil. The "double peak" phenomenon of the lift coefficient distribution of the curve-line slot airfoil is analyzed, and the design of a new deflector slot is proposed. This new slot configuration is based on the Coanda effect, and can improve the stall characteristics of the baseline airfoil comprehensively, with the stall angle of attack delayed by 14° and the maximum lift coefficient increased by 122% to 2.785. The deflector slot presented in this study provides a novel idea and reference for the design of high-lift devices.
-
Key words:
- airfoil slotted /
- numerical analysis /
- flow control /
- deflector /
- Coanda effect
-
表 1 7种缝道构型几何变化关系
Table 1. Geometric relationship of 7 kinds of slot configurations
序 号 名 称 几何特征关系 1 SS1 直线缝道,与弦线夹角56°。 2 SS2 在1基础上缝道中部折角处理,形成“偏折斜线缝道”。 3 CS1 在2基础上对缝道中部进行曲线修形,形成曲线缝道1。 4 CS2 在3基础上针对翼型下翼面的缝道口连接位置进行曲线修形,形成曲线缝道2。 5 CS3 在4基础上仅针对翼型上表面的缝道口靠近后缘方向的连接位置进行曲线修形,形成曲线缝道3。 6 DS 在5基础上针对翼型上表面的缝道口靠近后缘方向的连接位置进行导流片设计,形成新的“导流片缝道”构型。 7 CS4 在6基础上去掉缝道口的导流片,形成曲线缝道4。 -
[1] 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 025027. doi: 10.7527/S1000-6893.2020.25027ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 025027. (in Chinese) doi: 10.7527/S1000-6893.2020.25027 [2] 李应红, 吴云, 梁华, 等. 等离子体激励气动力学探索与展望[J]. 力学进展, 2022, 52(1): 1-32. doi: 10.6052/1000-0992-21-044LI Y H, WU Y, LIANG H, et al. Exploration and outlook of plasma-actuated gas dynamics[J]. Advances in Mechanics, 2022, 52(1): 1-32. (in Chinese) doi: 10.6052/1000-0992-21-044 [3] CHOI B, HONG Y, LEE B, et al. Adaptive flow separation control over an asymmetric airfoil[J]. International Journal of Aeronautical and Space Sciences, 2018, 19(2): 305-315. DOI: 10.1007/s42405-018-0029-z [4] 许和勇, 马成宇. 协同射流流动控制方法研究进展综述[J/OL]. 航空工程进展, 2022: 1-16. (2022-03-25).https://kns.cnki.net/kcms/detail/61.1479.V.20220324.0959.002.html.XU H Y, MA C Y. Review of the Co-flow jet flow control method[J/OL]. Advances in Aeronautical Science and Engineering, 2022: 1-16. (2022-03-25). https://kns.cnki.net/kcms/detail/61.1479.V.20220324.0959.002.html. doi: 10.16615/j.cnki.1674-8190.2022.06.01 (in Chinese). [5] 周晓亮, 翁海平, 龚玉祥, 等. 涡流发生器设计参数对某40%厚度翼型性能影响的实验研究[J]. 太阳能学报, 2022, 43(6): 212-218. doi: 10.19912/j.0254-0096.tynxb.2020-1011ZHOU X L, WENG H P, GONG Y X, et al. Experimental study on effect of vortex generator design parameters on 40% thick airfoil[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 212-218. (in Chinese) doi: 10.19912/j.0254-0096.tynxb.2020-1011 [6] HAO L S, GAO Y W, WEI B B. Experimental investigation of flow separation control over airfoil by upper surface flap with a gap[J]. International Journal of Aeronautical and Space Sciences, 2022, 23(5): 859-869. DOI: 10.1007/s42405-022-00488-x [7] 杨瑞, 杨胜兵, 孙霞阳, 等. 开缝对风力机翼型空气动力学特性的影响[J]. 应用力学学报, 2021, 38(1): 70-77. doi: 10.11776/cjam.38.01.A061YANG R, YANG S B, SUN X Y, et al. Effect of slits on aerodynamic characteristics of wind-driven airfoil[J]. Chinese Journal of Applied Mechanics, 2021, 38(1): 70-77. (in Chinese) doi: 10.11776/cjam.38.01.A061 [8] WEICK F E, SHORTAL J A. The effect of multiple fixed slots and a trailing-edge flap on the lift and drag of a Clark Y airfoil[R]. NACA Report No. 427, , 1932 [9] 刘中元, 褚胡冰, 陈迎春, 等. 前缘缝翼开缝改善增升装置失速特性研究[J/OL]. 空气动力学学报, 2022: 1-8. (2022-04-07).https://kns.cnki.net/kcms/detail/51.1192.TK.20220407.1028.002.html.LIU Z Y, CHU H B, CHEN Y C, et al. Stall characteristics of high-lift device improved by slotting on leading-edge slat[J/OL]. Acta Aerodynamica Sinica, 2022: 1-8. (2022-04-07). https://kns.cnki.net/kcms/detail/51.1192.TK.20220407.1028.002.html. doi: 10.7638/kqdlxxb-2021.0392 (in Chinese) [10] ZHU J Y , ZHU M K, ZHANG T, et al. Improvement of the power extraction performance of a semi-active flapping airfoil by employing two-sided symmetric slot airfoil[J]. Energy, 2021, 227: 120458. DOI: 10.1016/j.energy.2021.120458 [11] YEO H, LIM J. Application of a slotted airfoil for UH-60A helicopter performance[C]//Proceedings of the American Helicopter Society Aerodynamics, Acoustics, and Test and Evaluation Technical Specialist Meeting. San Francisco, CA, 2002. [12] RAMZI M, ABDERRAHMANE G. Passive control via slotted blading in a compressor cascade at stall condition[J]. Journal of Applied Fluid Mechanics, 2013, 6(4): 571-580. DOI: 10.36884/jafm.6.04.20670 [13] 卢章树, 陈潇, 张召明. 上缘开缝翼伞模型风洞试验方法探索研究[J]. 航空精密制造技术, 2020, 56(6): 26-29, 58. doi: 10.3969/j.issn.1003-5451.2020.06.007LU Z S, CHEN X, ZHANG Z M. Research on wind tunnel test method of model of slit parafoil at upper edge[J]. Aviation Precision Manufacturing Technology, 2020, 56(6): 26-29, 58. (in Chinese) doi: 10.3969/j.issn.1003-5451.2020.06.007 [14] BELAMADI R, DJEMILI A, ILICA A, et al. Aerodynamic performance analysis of slotted airfoils for application to wind turbine blades[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 151: 79-99. DOI: 10.1016/j.jweia.2016.01.011 [15] XIE Y H, CHEN J H, QU H C, et al. Numerical and experimental investigation on the flow separation control of S809 airfoil with slot[J]. Mathematical Problems in Engineering, 2013, 2013: 1-14. DOI: 10.1155/2013/301748 [16] WHITMAN N, SPARKS R, ALI S, et al. Experimental investigation of slotted airfoil performance with modified slot configurations[C]// 24th AIAA Applied Aerodynamics Conference, San Francisco, California. Reston, Virginia: AIAA, 2006: 3481. DOI: 10.2514/6.2006-3481 [17] 陈更林, 王利军, 闫小康, 等. 开缝翼型特性对轴流风机反风影响的数值模拟[J]. 煤炭学报, 2010, 35(8): 1395-1400. doi: 10.13225/j.cnki.jccs.2010.08.030CHEN G L, WANG L J, YAN X K, et al. Numerical simulation on effect of aerodynamic performance of airfoil with slot on reverse ventilation of axial-flow fan[J]. Journal of China Coal Society, 2010, 35(8): 1395-1400. (in Chinese) doi: 10.13225/j.cnki.jccs.2010.08.030 [18] MOHAMED O S, IBRAHIM A A, ETMAN A K, et al. Numerical investigation of Darrieus wind turbine with slotted airfoil blades[J]. Energy Conversion and Management: X, 2020, 5: 100026. DOI: 10.1016/j.ecmx.2019.100026 [19] NI Z, DHANAK M, SU T C. Improved performance of a slotted blade using a novel slot design[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 189: 34-44. DOI: 10.1016/j.jweia.2019.03.018 [20] NI Z, DHANAK M, SU T C. Performance characteristics of airfoils with leading-edge tubercles and an internal slot[J]. AIAA Journal, 2019, 57(6): 2394-2407. DOI: 10.2514/1.J058145 [21] BEYHAGHI S, AMANO R S. A parametric study on leading-edge slots used on wind turbine airfoils at various angles of attack[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 175: 43-52. DOI: 10.1016/j.jweia.2018.01.007 [22] BEYHAGHI S, AMANO R S. Improvement of aerodynamic performance of cambered airfoils using leading-edge slots[J]. Journal of Energy Resources Technology, 2017, 139(5): 051204. DOI: 10.1115/1.4036047 [23] 杨科, 王会社, 徐建中, 等. 开缝式风力机静态失速特性的研究[J]. 工程热物理学报, 2008, 29(1): 32-35. doi: 10.3321/j.issn:0253-231X.2008.01.010YANG K, WANG H S, XU J Z, et al. Stalling feature research of wind turbine with fin[J]. Journal of Engineering Thermophysics, 2008, 29(1): 32-35. (in Chinese) doi: 10.3321/j.issn:0253-231X.2008.01.010 [24] 张立军, 马东辰, 顾嘉伟, 等. 翼缝形状对垂直轴风力机翼型气动性能的影响[J]. 中南大学学报(自然科学版), 2019, 50(8): 1848-1856. doi: 10.11817/j.issn.1672-7207.2019.08.012ZHANG L J, MA D C, GU J W, et al. Influence of shape of slotted airfoil on aerodynamic performance of vertical axis wind turbine[J]. Journal of Central South University (Science and Technology), 2019, 50(8): 1848-1856. (in Chinese) doi: 10.11817/j.issn.1672-7207.2019.08.012 [25] 张振辉, 李栋, 杨茵. 基于前缘缝翼微型后缘装置的多段翼型被动流动控制[J]. 航空学报, 2017, 38(5): 120650. doi: 10.7527/S1000-6893.2017.120650ZHANG Z H, LI D, YANG Y. Passive flow control of multi-element airfoils using slat mini-trailing edge device[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 120650. (in Chinese) doi: 10.7527/S1000-6893.2017.120650 [26] WOOD N, NIELSEN J. Circulation control airfoils - Past, present, future[C]// 23rd Aerospace Sciences Meeting, Reno, NV. Reston, Virginia: AIAA, 1985: 204. doi: 10.2514/6.1985-204 -