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Abstract: The history of CFD (Computational Fluid Dynamics) in China is briefly reviewed in this paper. In
1970s, under the suggestion of Professor Hsue-ShenTsien, some scientists turned their research interests into a
new field, Computational Fluid Dynamics. Since then, CFD has become more and more flourished in China.
CFD in China has progressed vigorously in this century, and has made significant contributions to Chinese
aeronautic/astronautic industry and other civil areas. In China, integrated study of CFD and physical analysis
has been advocated since its early stage. In this paper, the concept of M’ A, which contains the main research
fields in CFD in China, was reviewed firstly, then the principles to design numerical schemes were introduced.
Under the guidance of these principles, a series of numerical schemes were constructed, such as NND, ENN,
compact schemes, and so on. Many high-order schemes were developed and applied recently to the complex
flow fields over realistic configurations. The criterion of grid size for solving gas dynamic equations was
discussed then. And finally, some typical and representative works on flow separation, the flow topology and
structure stability, the evolution and Hopf bifurcation of vortex along its axis, the characteristics of dynamic
derivatives, and flight stability were reviewed.
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0 Introduction

In 1972, under the suggestion of Professor Hsue-
Shen Tsien, Zhang H X turned his research inter-
ests of analytical solutions for hypersonic flows over
blunt bodies [ 1] into the new field of Computational
Fluid Dynamics. After that, he began to study the
numerical method for compressible flow, such as
some mixed explicit-implicit method for supersonic
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and hypersonic separated flow. In September 1978, the
institute of measurement and computation was setup
in China Aerodynamic Research and Development
Center (CARDC) under the suggestion of Professor
HsueShen Tsien. A major part of the researchers in
this institute begun their studies on CFD. In 1983,
Computational Aerodynamics Institute (CAI) was
set up in CARDC. In 1984, Zhang H X [2] found

the relationship between the coefficients of modified
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equation and the numerical oscillation around
shock wave. And then a numerical scheme was
proposed to compute the supersonic flow without
oscillation, This is the prototype of the NND scheme,
which has been widely applied in the simulations of
engineering problems and the study of numerous
mechanisms. In this period, many researchers in
China had become interested in CFD and began to
study CFD, such as Zhuang F G in CARDC, Shen M
Y in Tsinghua University, Dun Huang in Beijing
University, Zhu Zigiang in Beijing University of
Aeronautics and Astronautics, Zhang Zhongyin in
Northwestern Polytechnic University, Yang Zhasheng in
Nanjing University of Aeronautics and Astronautics,
Zhuang Lixian in University of Science and Technology
of China, Wang Chengrao in National University of
Defense Technology, Bian Yingui, Fu D X and Gao
Zhi in Institute of Mechanics, Chinese Academy of
Sciences and Wang Yiyun in China Academy of
Aerospace Technology. Since then, CFD undertook
fast development in China,

From July 2 to July 7 in 1982, the first national
conference on computational fluid dynamics of China
(NCCFD) was held in Chengdu, China. From then
on, it was held biannually. Because of the development
and contribution of CFD in China, two important
streams of conference in CFD -International
Conference on Numerical Methods in Fluid
Dynamics, ICNMFD (since 1969) and International
Symposium on Computational Fluid Dynamics,
ISCFD (since 1985) had been successfully hold in
China in 1986 and in 1997 respectively. From July
14 to 18, 2014, the eighth international conference
on computational fluid dynamics (ICCFD), a merger
of ICNMFD and ISCFD, was held successfully in
Chengdu, China. It is interesting coincidence that
this is the first time for China to host ICCFD and the
city of Chengdu hosed the first NCCFD twenty two
years early. China also held Asian Conference on
CFD (ACFD) several times (Mianyang in 2000,
Taiwan in 2005, Hongkong in 2010, Nanjing in
2012). Besides these conferences, there were many
workshops and seminars on CFD in China, such as
the most influential seminar held monthly in
Beijing, the Sino-Japan workshop on CFD, the
workshop on CFD cross the strait, and so on.

With the development of CFD, Zhuang F G and
Zhang H X [ 3] noticed both the advantage and
disadvantage of CFD technical. They pointed out
that the greatest advantage of CFD is to obtain the
detailed data of flow field and the impressive flow
structures, while the serious disadvantage is the
data ocean produced by CFD. Entering CFD era,
more and more researchers strongly rely on CFD
code, data and figures, ignore analysis on flow
mechanisms. So Zhang H X advocated that CFD
community should emphasize the integrated study of
CFD and physical analysis. He has been focusing on
the coupling study on CFD and physical analysis
since he entered this field. From April 10 to 17 in
1983, the first national conference on flow
separation and control (NCFSC) was held in Emei

mountain, where is not far from Chengdu. This
conference has been held biannually since then. The
main purpose of NCFSC is to study the flow
mechanism, in which CFD plays a very important
role.

Zhang H X spent all his energy on the study of
CFD and physical analysis. He has been the
chairman of both NCCFD and NCFSC for more than
thirty years. Based on the idea of integrated study of
CFD and physical analysis. he proposed the
principles to design numerical schemes, a concept of
M’ A for the area of CFD, NND scheme and a theory
of steady and unsteady flow separation, which are
considered as the landmarks or milestones of CFD
and fluid mechanics in China. In this paper, the
authors will give a brief review on these works.

1  Concept of M® A and Principles to Design
Numerical Schemes

1.1 Concept of M° A

In Ref. [ 3], Prof. Zhuang F G and Zhang H X
of CFD into six branches,
containing five “M”s and one “A”, which is marked
by M°A. The five “M”s represent method, mesh,
machine, mapping and mechanism
while “A” means applications.
“Method” is the key issue and the most active
branch in CFD. There are a lot of numerical
methods such as finite difference methods, finite
volume methods, finite element methods and
spectral methods. “Mesh” is the foundation of CFD.
It contains structured, unstructured and hybrid
grids and moving mesh. “Machine” means the
computers and supercomputers, which are the
hardware resources of CFD. In recent years,
computer science has achieved its fast development
in China. The ‘Tianhe-II’ Supercomputer became
the fastest machine in the world since 2013.
Therefore, how to reach the full HPC potential of
this supercomputer is an important issue for CFD.
“Mapping” represents the visualization of numerical
results, which is also a very important field to
analyze the big data. “Mechanism” is the soul of
CFD. With the powerful tool of CFD, we can obtain
the solutions for Euler or Navier— Stokes equations,
which are the governing equations of fluid motion.
Based on this solution and coupled with physical
analysis, we can reveal the detail mechanism of fluid
mechanics, which forms the contribution to the
development of fluid mechanics. Without the
mechanism, CFD will lost its soul and go to an extreme
direction to produce data ocean and pictures.
“Application” is the target of the CFD. The goal
to construct the numerical method, to develop the
software, is to promote applications in industry.
Now CFD has become a more and more important
tool for engineering design and optimization,
especially in aeronautics and aerospace. This is the
destination to develop science and technology. Fig. 1

shows the concept of M® A and relationship among
the five “M”s and the “A”.

classified the area

respectively,
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Fig. 1

Concept of M° A,

1.2 Principles to Design Numerical Schemes

Numerical scheme is the most important branch in
CFD. Based on the analysis of the evolution of
numerical error for the model equation and its
modified equation, Zhang H X proposed four
principles to design a rational numerical scheme.
They are the criterion of dissipation controlling, the
criterion of dispersion controlling, the criterion of
capturing shock waves and the criterion of frequency
spectrum controlling.

The first principle is the criterion of dissipation
controlling. It requires that the combination of the
coefficients of the dissipation terms is less than zero,
which indicates that the coefficient of the leading
dissipation term is less than zero. This is a necessary
condition for the stability of the numerical scheme.

The second principle is the criterion of the
dispersion controlling. It requires that the
combination of the coefficients of the dispersion terms
is less than zero on the left side of the shock wave,
while larger than zero on the right side of the shock
wave, It indicates that the coefficient of the leading
dispersion term is less than zero on the left of the
shock wave, and larger than zero on the right of the
shock wave. This condition can suppress the spurious
oscillation in the discontinuous region.

The third principle is the criterion of the frequency
spectrum controlling. This means that the difference
between the modified wave number and the exact
wave number should approach to minimum. This is
the key principle to design a high order numerical
scheme to simulate multi-scale flow problems.

The fourth principle is the criterion of capturing
the shock wave. In the numerical simulation of the
flow structures with shock waves, the scheme is
expected to capture the shock wave without any
oscillation, and the Rankine-Hugoniot relationship
should be satisfied. For second order numerical
scheme, the third coefficient of the modified
equation should be larger than zero on the left of the
shock wave, and less than zero on the right of shock
wave simultaneously. And the fourth coefficient will
be negative. We refer to Ref. [4] for details.

2 Numerical Schemes

2.1 NND Scheme

2. 1. 1 Relationship Between Coefficient of Modified

Equation and Spurious Oscillation around

Shock [ 2]

In 1984, Zhang H X [2] studied the evolution of
numerical error for Navier— Stokes equation. He
found the relationship between the coefficients of the
modified equation and the spurious oscillation
around the shock waves. Then, He proposed a
numerical scheme through controlling the oscillation
around shock wave, which is the prototype of NND
scheme. Here, we give a brief review of this scheme.

The problem of one-dimensional shock wave is
studied as an example using a time-dependent
method. The model equation and boundary con-
ditions are

Jau ar?u 9214_0
qu gu__ U
J Jdx 2
t X dx D
du
lx—»—OO, u—>u.. , — 0
dx
where
_ry+1 (17U2M0:>
a 2y U.. >
4 p
Y73 O
T
u? o 1+7—1M§3 u.. (2)

ps us and g are the fluid density, velocity and the
coefficient respectively. The variable ¢
represents the time and x a coordinate (Fig. 2).
Free-stream conditions are denoted with the
subscript “co”. M., is the free-stream Mach number
and 7y is the ratio of the specific heat. If the flow is
steady and the viscous coefficient is constant, Eq.
(1) represents the exact Navier— Stokes equations

viscous

governing a normal shock wave.

If a finite difference method is applied to solving
Eq. (1), the modified differential equation after
discretization can be rewritten as

du du Fu  Iu *u ' u

a "Yox Yok o A
(3)

where the right-hand side represents the truncation

error for the difference method. For a second-order

difference method, v, =0.

u

Fig.2 One dimensional shock wave.

Now, we study the effects of coefficients vy sy,
in Eq. (3) on the numerical solution. In fact, if the

flow is steady, Eq. (3) can be integrated for one
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time to obtain

3
(v+v,) auJFVsiz*MLZ*
(.Z‘ (7.1”
7;;1 (u—l)Eu—uv) )
u

where

[ =121+ 2 55)

Here, u =1 is the nondimensional velocity in the
upstream region of the inviscid shock, and u =u, is
the nondimensional velocity in the downstream
region.

We assume that the numerical oscillations induced
by the truncation error of the difference method are

small. Then, in the upstream region of the shock,
u=1-+4d (5a)
and in the downstream region of the shock,

u=u, +u (5b)

where «’ < 1 in the upstream and «’ < u, in the
downstream. Substituting (5a) and (5b) into Eq.
(4) and neglecting the high-order small quantity,

we obtain
2./ 3
J 1 Iu’ + v J LA, I u =kiu" (upstream)
Jdx dx* ax’
P / (’)2 / (’) ;
lyl % , T’i — ﬁ =—k,u’ (downstream)
(6)
where,
V1 :V+V2
po="L =) =0
2y
k) :y—O—lum (1 juz) ~ 0
2y U

Equation (6) is linear and its solution can be
determined by following characteristic equations

LJ,IAR - V_'),AZ - V[A +k1 =0 (upstream) (7)

vd> — v A" —viA—k, =0 (downstream) (8)
There are two typical solutions under two following
conditions.
Case 1. v, =0, v; << 0 and vy, is very small. For
inviscid flow (v =0) or the flow at high Reynolds
number ( yis very small), the solution of Eq. (6) is

< 1y ] — 2
1+A1€XP(2‘V3 ‘1>COS<2‘V3 ‘ Hwl k=i I)
‘ Vi . 1 1 — )
JrAZexp(Z‘V3 ‘x> sm(z‘y3 | VA v |k —

Sy
I

(upstream)  (9)
0 +Aexp{ [ o an D “2} r}
2 ‘ V3 ‘ 2‘ V3 ‘
(downstream)
10

It is very clear that the spurious oscillations occur
in the upstream region of the shock, but not in the
downstream region.

Case 2. vy, =0, y; > 0 and y, is very small. In a
similar way, it can be proved that the spurious
oscillations occur in the downstream region of the
shock, but not in the upstream region.

These two cases correspond to the flow patterns
using the second order difference scheme. Through
the  preceding  study for  one-dimensional
Navier— Stokes equations, it is found that the
spurious oscillations occurring near the shock with
the second-order finite difference schemes are related
to the dispersion term in the corresponding modified
differential schemes. If we can keep y; >0 in the
upstream region of the shock and vy << 0 in the
downstream, we may have a smooth shock
transition, i. e. , the undesirable oscillations can be
totally suppressed (Fig. 2).

2.1.2 Physical Entropy and Numerical Simulation

The preceding conclusion can be verified by
following physical discussion from the second law of
thermodynamics. In fact, the one-dimensional
Navier —Stokes equations modified by the addition
of dispersion terms with coefficient y; are as follows:

QB+1L”:O

dt dx

u  du 9p_ 0 (4 w9 u

0o P dxr Jdx 31‘(3#91) 31,'(”3 9x2>

JH ap (')H Jd (4 OH d I*H

C9r o TPz az<3’“‘ax) ﬂ(*?)
1D

Where p represents the pressure, H represents the
total enthalpy, and the Prandtl number is assumed
to be 3/4. From Eq. (11), we can obtain an
equation of entropy s for the heat-isolated system

o D= () + o (54) (5)

Here, Ds/Dt is the substantial derivative of entropy.
For a true physical shock, we have, in the upstream

of the shock,

12

Ju 2% u

dx <0 Az’

<0 (13)
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%52 8
Hence,
(52) (5%) <o aw

And in the downstream of the shock,

du u

Se<0, S5 >0 (15)
Hence,
(52) (5%) <o e

For inviscid flow or flow with high Reynolds
numbers, we may neglect the viscous contribution
to the entropy. Therefore, we may observe that if v,
> 0 in the whole shock region,
entropy condition is met in upstream region but not
satisfied in the downstream region. And this is
associated with the appearance of spurious
downstream oscillations. On the other hand, if v;<C
0 in the whole region, the increasing entropy

the increasing

condition is not met in the upstream, and spurious
oscillations occurs. Now, it is obvious that if we can
keep v; >0 upstream and y; <0 downstream, we
may have a smooth shock transition (Fig. 1).

To test the effectiveness of previous conclusion,
we calculated one-dimensional flow with Eq. (11).
Numerical results [ 5-6 ] verified the preceding
conclusion.

2.1.3 NND Schemes [5-7]

Zhang H X
proposed a second order non-oscillatory and non-free
parameter dissipation (NND) difference scheme.
We start with a one-dimensional scalar equation

Based on above considerations,

duy 9SG _, (17
dt dx

Here, f=au and a=3 f/du, a is the characteristic

speed, and we may write

a=a"+a (18)
where

a'=C+ |al) /2, a =@— |al)/2 a9y
Define

ff=a"u and f =a u (20)
We have

f=f+r 2D

Equation (1) may be rewritten as

du Af oS
dt dx Jdx
In the upstream region of a shock:

0 (22)

second-order upwind difference can be used to
replace d f1 /9x

second-order central difference can be used to
replace df~ /dx (23a)

In the downstream region of a shock:

second-order central difference can be used to
replace 9 /dx

second-order upwind difference can be used to
replace df~ /dx (23b)

Then we have made the proper choice of the sign
of the coefficient of the third derivative in the
modified differential equation, i. e.., v; keeps
positive in the upstream of a shock and negative in
the downstream of a shock. And this will provide us
with a sharp transition without spurious oscillations,
both upstream and downstream of shocks. At the same
time, we notice that the coefficient of fourth-order
dissipative derivative is negative in the entire region,
which can help to suppress odd-even decoupling in
smooth regions of physical flows.

Now we have the semi-discretized difference form
of Eq. (17) as follows:

where,
hivre = fiven + ik (25)
and

fi+ %Aﬂﬂyz (upstream)
f7+l/2L - 1 (26)
fi+ ?Af]tm (downstream)

Sin — %Af;Ll,"z (upstream)
f7+l/2R - 1 @27
S — ?Aﬁﬂ,e (downstream)

Af‘]iﬂ/z :f,iﬂ *f‘f (28)

Fram =T+ %min mod(A ST 1 Affe) (29)

_ — 1 . - -
fj+1,'2R :fj+1 - ?mm mOd(AfjH/z »Afﬁz,fz)

(300

min mod(a,b) :%(sign(a) + sign(®))min(| a |6 |)
(3D
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2.1.4 Extension and Applications of NND Scheme
Since the birth of NND scheme, it has been studied

and applied extensively in Chinese CFD community.
It was extended to several versions ranging from
NND1 to NND-5 [ 6-7]. Moreover, the finite
difference version of NND scheme was extended to finite
volume version [ 8 ] on unstructured and structured/
unstructured hybrid grids. As an example, we just list a
third order essentially non-parameter non-oscillation
(ENN) scheme [ 9], which is an extension of NND
scheme by careful designing of the limiters as follow.

LA — BMCari. = afi.

(Afi‘ﬂﬂz - Afi‘fl/z )]
if ‘ Afﬁrln | < ‘ Aftl,r'z |

hi}ﬂﬂz - 1 ﬁ
fjr + ?A][T« 1/2 + 3 MS[(AfT\ /2 — Aftl/z ),
(Af,“fl/z - AfiLMZ )]
lf ‘ Aft#l/z 2‘ Af;tlr’z ‘
(32a)
1 B _
f,irl - ?Af;rl/g —|— 3 MS[(AfiJrS,"Z - Af;rsx’z ) ’
(Afise — Afie) ]
— if | Afiae [<<IAfie |
hivie = 1 8
fT - ?Aﬁlxz - 6 MSI:(A +3/2 Aﬁl,”Z ),
(Aﬁl,’z - Af‘;l/'z )]
1f ‘ Af‘?\f?,"z |>| A\f?\l,’z |
(32b)
There are many applications of NND schemes on (&) WCENN
flow mechanisms and computation of aerodynamics Fig.3 A supersonic flow in a nozzle at (=1, 5 ms.

for engineering problems [ 8-14]. Fig. 3 contains the
contours of a supersonic flow in a nozzle, which are
obtained by several different versions of NND
scheme. For comparison, we also provide the
experiment picture, We can observe that the
complex flow structure is captured clearly, and as
the accuracy order increasing, the complex flow
structure becomes clearer. Fig. 4 contains the time
evolution of flow structure of a normal shock wave
passing through a wedge in a tube. The numerical
scheme is a fourth order weighted DRP scheme
[13]. The flow structure is captured very clearly.
To compute the aerodynamics of engineering
problems with complex configurations, a series of
in-house software were developed based on the NND
scheme in CARDC, such as the CFD platform for
supersonic flow on structured grids-Chant, the CFD
platform on unstructured and hybrid grids-
HyperFLOW. These CFD codes were extensively
applied to the engineering problems with complex
configurations. Meanwhile, Zhang’s group had
developed their grid generation techniques for
unstructured and hybrid grids, and dynamic hybrid
grids. As an example, we show the numerical
simulation for the problem of a wing-pylon-store Fig. 4 Density contours of shock wave move around a wedge
separation [ 14 ]. The unsteady solver is coupled with in tube (Ms=8.293) by a 4th-order HWDRP4.
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Fig. 5 Dynamic grids during the store separation.

Fig. 6 Pressure contours during store separation.

(a) Linear velocities vs. time

(b) Angular orientations vs. time

(¢) Moment coefficients vs. time

Fig. 7 Kinetic and aerodynamic parameters
during separation.

the six degree of freedom (6DOF) integration. The
moving grids have been shown in Fig. 5. Fig. 6 shows
the pressure contours during the store separation. In
Fig. 7, the kinetic and aerodynamic parameters during
separation are shown, and compared with experi
mental data [15] (marks in the figure). Note that the
present results agree very well with the published
results. In this case, the total number of cells is about
240M and a 32-processes parallel computing was
adopted also.

2.2 Compact Schemes Satisfying the Principle to
Suppress Numerical Oscillations

2.2.1 A Generalized Compact Scheme Satisfying
the Principle to Suppress Numerical
Oscillations

Based on the principle of the suppression of the
numerical oscillations, Shen M Y [ 16 ] proposed a
class of generalized compact scheme for the model
equation (1). It is

Ax(BFy +8F;, +B84F ) +
(Ax)* (7% SJ+1 + 7’(1) S,’ + 7171 Sﬁl)
:Q’iuﬂrl +0((l)uj —’—ailuﬁl (33)
du

Where, F; and S; are approximations for (ﬁ) and
gl J

d u . ..
<7> respectively. a), s B and 7, are coefficients.
ax j

After Taylor series expansion and successive
differentiations for F; and S; , and substituting them
into the model equation (1), it is easy for one to
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obtain the modified equation:

(), G, =0 (2,0 2),
o (i), o0 ), G2),
I u

T <ai>6> R (a u)

+
+

34

For fifth order accurate compact scheme, the
coefficients are

(i:09172’39475>
a(Ax)s(ai L)
2X61 \a)y,  2an

__a (A’ Tfaw 1
AAE IS [15 z(a,',,+2a,',,)}

1 1 1
where ai =a1 + o) and a), =al —a’; .
The modified equation for the fifth order accurate
compact scheme can be rewritten as

du dJu\ — d"u
(5i), Te (52), =2 (5),

n==6

yi=0

A (35)

(36)

According to the principles about the construction
of high-order accurate schemes proposed by Zhang
H X shown in the previous section, the principle of
stability is s > 0 in the whole computational
domain. The principle about suppression of the
oscillations is

upstream

Y. >0,
{}/7 <0, downstream (37
Following these conditions, one can obtain
Ja“ -+ — <—10.552 05, (upstream)
a”l 2a/“
1— 0.552 05 << a“ + 2— <0, (downstream)
an A
(38a)
For the case of @ > 0, and
0 << a“ + — 2 -1 <C0.552 05, (upstream)
an A
(downstream)
an 201,“
(38b)

For the case a <Z 0. From these conditions, one
can obtain the coefficients o, » 8, and ¥}, in Equation
(33). We refer to the paper Ref. [5] for detail.
Based on this scheme, Zhang et al. [17] proposed a
three

space-time conservation schemes for

dimensional Euler equations.

2.2.2 A Compact Scheme with Group Velocity

Control

Fu D X and Ma Y W [ 18, 19 ] heuristically

analyzed relationship between the oscillation around
shock wave and group velocity of wavepackets of
They found that the oscillations
in the numerical solutions are produced behind the
shock wave if the group velocity of wavepackets with
moderate and high wave numbers in the numerical
solution is slower than the group velocity of the
The oscillations are produced in
front of the shock if the group velocity of the wave
packets with moderate and high wave numbers is

numerical scheme.

exact solution.

faster than the group velocity of the exact solution.
To suppress the oscillation, the method of diffusion
analogy was used to control the group velocity of
wavepackets so that the Fourier components in the
numerical solutions have a faster group velocity of
wavepackets behind the shock and a slower group
velocity in front of the shock.

The compact scheme proposed by Fu and Ma has
the following form

FJ+1 +BJFJ _’_ijjfl :d] (39)
Where,
C(]:%_O'_,-%a 7,:%+6,—i ’
2
‘B,Zg_ﬁﬁr% +67—79
d; =08"f; —2(c;y10; — 0, L0.) [ (40)

And ¢ is a parameter to control the group velocity of
the numerical scheme, which is defined as

]+17Pj

o+t = =g [1-+ y()SS(u1+ ) ] P + P,
1

4D

With1 <<s, < 2and 0.8 << y, << 1. SS(w) is shock
structure function, Whlch is defined by SS(u) =
sign (iu f));(u) . We refer to papers Refs. [18,19] for

details.

2.3 Some Recent Progress on High Order Numerical
Schemes

As the fast development of supercomputer, direct
numerical simulation (DNS) has become a very
powerful tool to study the mechanisms of multi-
scale flows, such as turbulence and aeroacoustics.
The simulations for these multi-scale problems need
high order and high resolution numerical methods.
To achieve this goal, Zhang’s group developed a
series of high order, high resolution shock capturing
schemes, including the weighted nonlinear compact
schemes ( WCNS) [ 20-22], a class of central
compact scheme with spectral-like resolution
(CCSSR) [23-25], improvement the convergence
toward the steady state solution for weighted
schemes [ 26-27 ], WENN scheme and a class of
hybrid schemes of discontinuous Galerkin and finite
volume method (DG/FV) [28-31]. Some of these

high order numerical schemes have been applied to
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solve engineering problems with complex confi-
gurations. Almost all of these schemes have been
applied to study the mechanism of complex flow
[ 32-42 ]. For example, Li and Fu [ 36-42 ]
performed a of DNS including isotropic
(decaying) turbulence [ 36], turbulent mixing-layers
[37], turbulent boundary layers [ 38-417] and shock/
boundary-layer interaction [ 42]. The mechanism,
modeling and controlling techniques of compressible
turbulence are studied based on the DNS data,
which show that DNS is a powerful tool to study
compressible turbulence. Fig. 8 shows the distribution
of skin fraction coefficient on the surface of a cone
from DNS data in Ref. [41], and it shows that

transition line on the cone surface shows a non-

class

monotonic curve. Fig. 9 shows the instantaneous
temperature in a DNS study of compression ramp
[42 ], which shows the complex patterns for a

shock-turbulent boundary layer interaction flow. We
refer to Ref. [4] for details.

Fig. 8 Distribution of skin fraction coefficient
on the surface of a cone. The dished line indicates
the transition location [41].

Fig. 9 Distribution of the instantaneous
temperature in a compression ramp [42].

3 Criterion of Grids for Gas Dynamics Equations

To correctly compute the flow field described by
Euler equations or Navier— Stokes equations, Zhang
H X [43] proposed a criterion for grid size. The
non-dimensional form of gas dynamics equations can
be written as

dt  dx Jdy Iz

oH 1 <(7F:;+<7Gw (7Hl,>
€ R(f[( aI Hy (’);f

(42)

where x, y, 2 are the coordinates in the streamwise
direction, circumferential and normal directions of
the body surface, Re; is the Reynolds number. Ife=
0, it is Euler equations. Ife=1, it is Navier— Stokes
equations. If an m-th order difference scheme is
adopted to simulate Equation (42), the semi-discretized

modified differential equations corresponding to the
difference equations are

U, dF G | aH _
at dx dy dz

)F. G . ' H
e(Axs == 71” + AyF (77(” e
C C

) (43

where a,f,7 are determined by following relations
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Ax, Ay and Az represent the grid interval. v$" ,v¥ ,

ceo kP are the coefficients of the m-th order
truncation error terms.

In order to calculate correctly the flow fields
described by Euler equations, the computational
grids must satisfy the following requirement:

alAx" <1, o Ay" <1, A" <1 (44)
where
- ﬁ (’]wF
C] - F (71‘7;1
& e
LZ G aym
o
(‘3 H azm
Now we discuss the computational grids for

Navier— Stokes equations. In that case, Equation (43)
can be further written as:
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From Equations (45), together with conditions
(44), the computational grids for Navier— Stokes
equations should be chosen as follows:

DA™ K1y byAy" P <1, byAz" 7 K1 (46)
where
V(l) HmF
])1 — m — ,
F, ox
b, — ui2 oG
72 GU (’)ym ’
l/f,f) ’)m H
by = H, dz"
V(l) 8”’F lJ(Z) amG l/(3) J"’H
G ll , m , m m
senerally F. ao" G, ay" and H. o=
are not very small, so we have to ask:
a<m a<<m
B<<m or B m A7)
y<<m y<<m

The conditions (46) and (47) mean that only if a,
B and y are all less or far less than m (the accuracy of
the difference scheme used), the contribution of
viscous terms are correctly calculated. In many
references which adopt the second order scheme to
solve Navier—Stokes equations (m = 2), the grid
interval do not meet the above requirement (46) or
(47). Only in the direction 2, Yy <m is valid because
the grid clustering technique is applied close to the
body surface. In this case, it seems to solve the
fully Navier— Stokes equations, but in fact it is just
equivalent to solving viscous thin-layer approxi-
mation equations,

According to the above discussion, the grid
interval and the number should be designed in the
computation according to above relations for every
grid system. In recent years, we have developed the
hybrid grid system based on the above requirements,
which consists of structured, unstructured and
rectangular grids. This system fits to the computation of
complex flow field and can save CPU time.

4 Physical Analysis

From 60s to 80s of last century, there was a long-
standing dispute regarding whether the separation
line is an envelope of the limiting streamlines or the
skin friction lines, or if itself is also a limiting
streamline [ 44 ]. With the development of CFD, it

was the best time to study this problem in terms of
the physical analysis and numerical simulation.
Moreover, in the numerical simulation and experimental
tests, the flow structure is often examined through
studying the surface flow on the body and cross-flows on
the cross sections perpendicular to body axis. Hence,
the topological rules of the surface flow and cross-
flow are very important for analyzing the flow
structure and mechanism.

4.1 Criteria of Flow Separation

In Ref. [45] and [46], Zhang studied the criteria
and flow pattern of steady separation described by
Navier —Stokes equation and boundary layer
equation respectively. To study the separation of
three-dimensional steady flow on a fixed wall, we
introduce two definitions: 1) Separation line is the
intersection of wall and separation surface leaving
the wall; 2) The solid wall can be regarded as a
limit stream surface that attaches to the wall.
Separation surface and wall ¥ — 0 are two different
flow surfaces. Fig. 10 is a schematic diagram of the
flow pattern near a separation line. Based on these
definitions, Zhang H X proposed separation criteria.

Separation surface

Separation line

Limit streamline

Wall
Separation line

Streamline
Limit streamline

Fig. 10 Schematic diagram of flow separation
and coordinate system.

Suppose x, y and =z are three axes of an
orthogonal coordinate system. x and y are on the
wall. z points toward the outward normal direction
of wall. hy =h,(x,y,2), hy =h,(x,y,2) and hy; =
hs;(x,y,2z) are Lame coefficients in x, y and =z
directions respectively. Supposing the separation
surface be z = f(x,y) , the equation to describe the
separation surface is:

Flx,y,2) =2z— f(x,y,2) =0 (48)

After considering the geometrical relationship of
separation pattern, we can obtain the separating
angle between the wall normal direction and the
normal direction of separation surface, which is
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iy Ldf\
[tg@ 5 (ay) }T (49)

Supposing the separation line be y axis, the
subscript “0” shows any point on the body surface.
Because the flow described by Navier— Stokes
equation has no Goldstein singularity at the
separating line, Taylor series expansion can be used
to the velocity components (u,v,w) . They are

dJu 1 9% I u .
=, 4 5 (Gt G0

),yz + -

au
77

z):(%)(,er (9 ),z +< ),y (50)

ALY,
J ‘a,@

w="1(2 Lzt 4 -

+(

),z e

Where the boundary conditions u, =v, =w, =0 and

Jdw . . .
(Z7) =0 from continuous equation are used. Using

0

dz
(49) and (50), we can obtain the following relations
on the separation line.

Ju

(i)“zo (51)
Pu.
IR ”—0 (52)

Now, we consider the motion of flow in the near
region of separating line. The equation is

10

J}h dx
Vf 9y _

h, dx o
The first equation represents the characteristic of
flow in the cross section perpendicular to the
separating line. The second equation represents the
flow characteristic in the section parallel to the plane
of xoy. As = — 0, it represents the limiting
streamline on the wall. Substituting (50) into (53)

on the separation line and neglecting high order
term, we can obtain

(53)

= |e = |8

(h), ((7 “)~

9z _
dx I’ u 2% u
(922 ) [,Z T2 (9133/) S

Based on the critical point theory, we know that
the point ‘0’ is a saddle on the cross section
perpendicular to the separating line if

«,

(55)

g=2 (h), ((7 "cl@)“ ( 2%u

F}IJy) =0

As ¢>>0, ‘0’ is a node or a focus. Because on the

separating point the flow leave the wall, which
2% w J* .

means w > 0, <( z;) > 0, and<( u) > 0 if
Iz" /, dxdy),

Hence

qg>0.

R=— [(’“ 77;) ) T2 (71;;) } =

Due to the instability of node and focus point, the

d°u
(71(7")/) “< 0

possible pattern of ‘0’ is a saddle where (

And we can obtain a criterion of separation;

(J(l‘a'”y)“<o (56)
(55) >0

Further studies on the separation line showed
that: 1) the separation line is a limiting streamline,
not an envelope of limiting streamline. Limiting
streamline in the near region will converge toward
it. 2) There are two possible starting points for the
separation line, One is regular point and the second
is a saddle point. The separation line started from a
regular point is of open type. On the other hand,
the separation starting from a saddle point is a
closed type. Fig. 11 is the possible pattern of flow
separation.

Similar analysis for the flow separation described
by boundary layer equation show that the separation
line is the envelope of limiting streamline due to the
Goldstein singularity [ 9 ].

Possible pattern of separation.

Fig. 11

Wang [ 44 ] pointed out that the above study on
flow separation settle down the long-standing
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dispute regarding whether the separation line is an
envelope of the limiting streamlines or the skin
friction lines, or if it is also a limiting streamline.
This question has since been clarified by Zhang
(1985) who concluded that both versions are partly
correct, i. e. the separation line is an envelope if
based on the boundary layer theory, but it is a
limiting streamline if based on the Navier— Stokes
equations.

4.2 Body Surface Flow Topology

Because formula (50) is valid at any point on the
body surface, substituting (50) into (54) neglecting
high order terms and considering ¥ — 0, we can
obtain

hy dlzav/ﬁz
h, de  du/dz

57

It describes the limiting streamlines to the body
surface. Now, we consider the singular point “S”

which satisfies (il) = (@) =0.

dJdz s aZ S
. *u d*v *u v
To define J = ((71“(72)5 (ayaz>s ((7y(72>5 (axaz>s
d _ *u d*v btai
and ¢ == | (5350), F (352), | » we can obtain
following conclusions based on the nonlinear

analytical theory:

DIHJ>0,4] —g>0andqg >0, the point “S”
is a stable node of limiting streamline. If J > 0,
4] —q > 0and ¢ << 0, the point “S” is an unstable
nodal.

2) If ] >0, 4] —g<<0and g >0, the point “S” is
a stable node of limiting streamline. If /] >0, 4] — ¢
< 0and g << 0, the point “S” is an unstable node.

3) If ] << 0, the point “S” is a saddle.

4) ] >0,4] —qg<<0and ¢=0, Hopf bifurcation
will undergo at the point “S”. When ¢ changes its
sign from ¢ > 0 through ¢ =0 to ¢ << 0, there is a
stable limit cycle. As ¢ changes its sign from ¢ < 0
through ¢ =0 to ¢ > 0, there is an unstable limit
cycle.

5) On the body surface, Lighthill have proved
that

DIN—D>1S=22—n

Where > N is the number of nodes. >0 S is the
number of saddles. And n is the degree of surface
connection. For a single connected region, n = 1.
For a double connected region, n=2.

4.3 Cross-flow Topology [ 47-48]

As we study the property of flow separation on
body surface, it is necessary to study the spatial
characteristic of flow structure. Supposing x, y » 2
are the orthogonal coordinate system with = being
the axis of body, x laying on the configuration line
which is intersection line of body surface with
transverse plane normal to z-axis, and y-axis being

normal to the configuration line outwards. u, v, w
are the velocity components along x, y, z direction

respectively. Using the qualitative theory of the
ordinary differential equation, we analyzed the
patterns of the sectional streamlines in the

transverse planes. The following topological rules
can be obtained [47].

1) When the angle between the body surface and
its axis is not zero, the configuration line is not a
sectional streamline. If this configuration line does

not pass through a singular point of limiting
streamlines on the body surface, there are no
singular point of sectional streamlines on it.

Otherwise, if the configuration line pass through a
singular point of limiting on body
surface, this point is also a singular point of the
sectional streamlines (called as half singular point)
and their behavior of singularity are the same. When
the angle between the body surface and its axis is
zero, the configuration line is a sectional streamline.
If this configuration line passes through a singular
point of limiting streamlines on the body surface or
the configuration line is normal to the limiting
streamline, then this point is a singular point of the
sectional streamline.

2) In the transverse plane of the body, the
number of singular points of sectional streamlines
agrees the following law .

SINH LN =D 51308 =~ (58)

Where Ic is Poincare index along the closed curve
C of the above configuration line. >N, > S is the
number of nodal and saddle points in the field
outside curve C. 2 N', >S" is the number of half-
nodal and half-saddle points on the curve C.

3) We can prove that Ic=1 if the transverse plane
is located in region where no reverse flow along the
main streamline direction existed. However, in the
case that the transverse plane is located in the
reverse flow region on body surface, Ic= 0. This
means that the change of Poincare index along the
longitudinal direction can tell us the information

streamlines

about the longitudinal separation. Hence the
longitudinal separation criterion is: ahead of the
longitudinal separation region Ic = 1. In the
longitudinal separation region Ic = 0. Behind

longitudinal separation region, Ic=1. The change of
Ic from 1 to 0 and from 0 to 1 indicates the
beginning and the end of the longitudinal separation
respectively.

4) Supposing configuration line is symmetric and

A, B are the points on upwind and lee side

respectively. When (?) > 0(<C0) , the number of
ay A
the singular points is the odd (even). When ((;l)
le y B

> 0(<C0) , the number of the singular points is the
even (odd).

The theory of flow separation in the subsections
4.1 and 4. 2 was verified [ 9, 48-50 ] through

physical analysis and numerical simulation. For
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example, He G H and Li Z W [ 9] simulated the
hypersonic flow over a capsule type body and space
shuttle like configuration, which are shown in Figs.
11 and 12 for the surface flow and cross flows in
Different patterns of
flow separation were obtained and agree with the

different transversal planes.

analysis.

In addition, applying the theory of structural
stability [ 51-527] in mathematics, Zhang and Ran
developed the structural stability of velocity fields

(a) Surface flow patterns (¢=20°, 2XN=6, >S=4)

(b) Streamlines on cross section (¢=20°)

Fig. 12 Surface flow and cross flows
for a capsule configuration.

Fig. 13 Spatial flow structure of a space
shuttle-like configuration.

[53-54]. It is pointed out that as there is a sectional

streamline connecting two saddle points in the

symmetric line shown in Fig. 14 (¢), the symmetric
flow field loses its stability.

Fig. 15 shows the velocity distribution at lee-ward
symmetrical line and sectional streamlines, which

(a) Small attack angle

(b) Moderate attack angle

(c) Large attack angle

Fig. 14 Changed flow fields at different angles
of attack for hypersonic flow over slender
body M.. =10, Re=1X10°,

0.20
0.15
57 0.10
0.05
01 21 41 61 8
y

(a) a=5"

0.20
0.15
~>0.10
0.05
0 1 21 41 61 8
b2

(b) a=10°
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L 0.145 o 9z
0.090
0.035 {\ The analysis concluded that:
0020 1) If A(2)>0, the sectional streamline in the cross
1 21 ‘;}1 6l section perpendicular to the vortex axis spiral inward
. in the near region of the vortex axis.
(© =12 2) If A (2)<C0, the sectional streamline in the
0.400 cross section perpendicular to the vortex axis spiral
0.225 outward in the near region of the vortex axis.
v 3) If A(2) changes sign along the vortex axis,
£70.060

ey

el 21 41 6l
y

(d) «=20°

Fig. 15 Velocity distribution at lee-ward symmetrical line (left)
and sectional streamlines for hypersonic flow
over slender body M., =10, Re=1X10°,

agree with the theoretical analysis. As the angle of
attack ¢ = 12°, there is two saddle points on
symmetric line of lee side. Then the loss of flow
structure stability begins with this angle attack
increased.

4.4 Evolution and Hopf Bifurcation of Vortex Along
its Axis

From 1992, Zhang [ 55-56 ] studied the flow
pattern of vortex in the cross section perpendicular
to the vortex. He obtained the evolution of vortex
structure on the cross section perpendicular to the
vortex axis and found that there is Hopf bifurcation
in the sectional streamlines. As a result, there is a
limit cycle in the sectional streamlines. Moreover,
there is an essential difference between a subsonic
vortex and a supersonic vortex.

Suppose x, y and z are three axes of an
orthogonal coordinate system, (u,v,w) is velocity
components in the directions of x, y and =z
respectively. 2z is in the vortex axis. x , y locate on
the cross section perpendicular to the vortex axis.
The equation to describe the sectional streamline on
the cross section perpendicular to the vortex is

dy _v(x,y,2) (59)
dr  ulx,y,2)
Using the boundary condition on the vortex axis

and critical point theory, we can obtain the function

A(z) that determines the pattern of the sectional

streamlines for NS equations. The function A(2) has

the following form:

A= |LdeypLdpw (60)
o 9t e 9z |,

”»

where, p is density and subscript “o” shows a point

on the axis of vortex. For steady flow:

Hopf bifurcation will occurs, which results in a limit
cycle in the section streamlines.
Using the NS equation, A(z) can be written as

A(z) =

L o1y 2Py 4o L
(pw)“(MZ 1)(32)“+5(R6) (62)

where M and p is Mach number and pressure
respectively. e(1/Re) represents the viscous term.
When Reynolds number Re > 1, ¢(1/Re) can be
neglected. It is shown that there is an essential
difference between a subsonic vortex case and a
supersonic vortex one along the axis-z. For a
subsonic swirling flow, the sectional streamlines in
the vicinity of the vortex axis spiral inwards in the
locally favorable pressure region and they spiral
outwards in the locally adverse pressure region.
However, for a supersonic swirling flow, the
sectional streamlines in the vicinity of the vortex
axis spiral outwards in the locally favorable pressure
region and they spiral inwards in the locally adverse
pressure region.

Fig. 16 represents the relationship between the
function A(2) and the vortex structure. Based on the
found of limit cycle, Zhang H X proposed a concept
of “Black hole” in vertical flow, which was proved
by Zhang [57] through numerical simulation of the
vertical flow over a Delta wing, which is shown in
Fig. 17 for the trajectories starting from the apex.

3

~ .

o

Fig. 16 Relationship between the function
and the vortex pattern in the cross section
perpendicularto the vortex axis.

The above theory on the steady vertical flow was
proved by Zhang [57] and Chen [ 58] and was
extended to unsteady flow by Zhang et al. [597]. A
similar function A(z,t#) of was obtained to determine
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the sectional streamlines pattern for unsteady flow.
The interaction of a normal shock wave and a
longitudinal vortex was simulated. Fig. 18 is the
variation of A(z,¢) along the vortex axis at typical instant
t=11. Fig. 19 contains the sectional streamlines at
several typical cross sections.
agrees with the theoretical result. One more limit cycle
is observed when A(2) changes its sign.

The numerical result

Fig. 17 Black hole in the lee-side of a delta wing.

Fig. 18 Distribution of A on the vortex axis at r=11.

rz=-5.0075 2=0.109

0.4 £:=-6.6275 A=-4.7
02F
= 0F = 0
02F
-2
-0.4

-04 -02 0 02 04

= 0

2

-0.4

-04 -0.2 yO 02 04 -04 -02 }9 02 04

Fig. 19 Sectional streamline pattern in the cross-section
perpendicular to the vortex axis t=11.

4.5 Analysis of Dynamic Derivatives [ 60 ]

When the vehicle is in pitching oscillation, the
coupled equations describing the pitching oscillations

of the vehicle and the unsteady flow around it are

[60]:

16=C,+Co (63)

U | dE | IF | aG _JE, | IF, | IG,
Jat dx  dy

lcmk =H r, X [— p.n +o1]dS
wall

Oyi dx dy dy (64)

The first equation describes the single-freedom
pitching motion of the capsule about its center of
gravity. I is the dimensionless rotation inertia. C,,
and C, are coefficients of the pitching moment and
the damping moment. Note that C, in free flight is
zero, but it must be considered in wind tunnel

experiments. 0 and 0 are the first and the second
of 0. The
equation is the unsteady Navier—Stokes equation.
The third equation is the integration formula of

order temporal derivatives second

pitching moment coefficient, where r is the vector
from the point on the body surface to the center of
gravity. k is the unit vector in the direction of axis =
, n and 7 are unit vectors on the body surface in
normal and tangential directions respectively. p, and
o are stresses on the body surface in the normal and
tangential directions respectively.

=0
y=20
system to describe the pitching motion as:

, we can obtain the nonlinear dynamic

Let {

{i‘¢1‘+/7y+g (65)

j}zm‘ +dy

where

G0.0.0)

n 2C,. )
1— {]
a0 |,
ac,, . aC,,
a—[(ag)ﬁr(%(o,O)}/{l {{]6’} } ]
aC,, aC,,
b:<—.) 1= |5 | L e=1.d=0
a0 a0 ) oo

With the dynamics system (65), we can analyze the
property of the vehicle in the near region of the trim
point. There are three different cases. The first is
that it has only one trim point. The second has two
trim points and the third has three trim points.
Next, we will analyze them separately.

4.5.1 Qualitative Property of the Dynamic System
Having One Trim Point

In the case (9C,/d0), < 0, there is one trim
point. The condition of dynamic stability for the
nonlinear system could be written as
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Sometimes, the second condition could also be
written as

(66)

e
1—|—
(’)(9 0 0

This condition is stricter,

AM.) =) +4 <0 (67)

which requires the
phase portrait of the stable motion to be the spiral
point. If Eq. (66) is not satisfied, the motion is
dynamically unstable. Stable and unstable states are
shown in Figs. 20 and 21.

EN g é% ) R
Stabl€ equilibrium solution(0,0)
, : .

X
(a) phase portrait

(b) time history

Fig. 20 State of A<<0 and A<T0.

Unstable equilibrium solution(0,0)

X t
(a) phase portrait (b) time history

Fig. 21 State of A”>0 and A™>0.

Moreover, the characteristic values of the

Jacobian matrix of the linear parts of Eq. (65) are

two unequal roots: w.; :%J_ri /% L AtA=A, =

0, following conditions are satisfied:

1) The real part of the characteristic values:
Relwi (X)) sws (A.,) ] =0.

2) The imaginary part of the characteristic valuse:
Imlw; (A,) sz (A,) =0

2 dRe[w, (A.,) s (A,,) ] |

da

Therefore the characteristic values of the system
satisfy the three conditions of Hopf bifurcation at A=
Ao = 0. This indicates that Hopf bifurcation would
happen for a nonlinear dynamic system when A

1
A=a,,=0 :? =N

changes from A << 0 to A = 0. On the (x,y) phase
plane, a stable limit cycle would occur (Fig. 22(a)).
The time history curve of pitching oscillation angle
would present a periodic oscillation (Fig. 22(b)).

Here, we theoretically obtain the critical condition
of the happening of Hopf bifurcation as well as the
occurrence of the limit cycle:

aC,, aC,,
m(M»{(. )+cu<o,o>}/ {k {} }o
26 ), 2% ).

(68)

from which the critical Mach number could be
determined.

Stable limit cycle

Unstable equilibrium solution(0,0)
X t
(a) phase portrait (b) time history

Fig. 22 State of A changes from A <Z 0
through >0 to 1>0.

4.5.2 Qualitative Analysis of the Dynamic System
Having Two Trim Points on the Moment
Curve

When the Mach number decreases from a high
number to a certain number, the moment curve
changes from having one trim point to two trim
points. For critical case which changes from having
one trim to two trim points, we can prove that it is
dynamic instability and is saddle node bifurcation.
4.5.3 Phase Portrait in the Neighborhood of the
Three Trim Points at M.. < M.,

When C, =0, 0C,/30) < 0, > 0 and <0 are
respectively at the three trim points a;» @, and a; of
Eq. (65). So a; and @y are nodal points while @, is a
saddle point. The form of the @ — « phase portrait is
different with respect to the difference of
2C,,/90) ,. For example, when (9C,,/30) 0 at a;
and q; respectively, the phase portrait ata, and a5 are

all stable nodals (Fig. 23).

Fig. 23 Phase portrait structure of A<Z0
respectively at ¢, and a;.
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5 Concluding Remarks

Chinese CFD got its great development in the past
thirty years. NND scheme was a milestone in
Chinese CFD, which has been extensively applied to
flow mechanism study and numerical simulations of
engineering problems with complex configurations.
Moreover, there were many landmarks, such as the
five Ms and one A, the four principles to design
numerical scheme.

The key creative idea of Chinese CFD is
emphasizing the coupling study of the computational
fluid dynamics and physical analysis. Based on the
powerful tool of CFD, a lot of mechanisms of fluid
mechanics were revealed including the steady and
unsteady flow separation, vortex motion, dynamic
derivatives for vehicle and the generation of
aerodynamic noise.

However, there are still many grand challenges in
CFD. With the fast development of supercomputer
and high order numerical schemes in recent years,
we believe that it is the best time for CFD to reveal
the detail fluid mechanisms for multi-scale
problems, such as turbulence and aeroacoustics.

It should be pointed out that this paper does not
contain everything of CFD in China due to the space
limitation. The authors would like to show sorry on
this regard.
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