Vol.25 Dec.,2007

文章编号: 0258-1825(2007) 増刊-0024-05

风洞自由飞实验测量 *M* = 5,10°半锥角 尖锥、钝锥气动动稳定特性

贾区耀,杨益农,陈 农

(航天空气动力技术研究院,北京 100074)

摘 要:超声速、高超声速小攻角状态下简单尖锥体、小钝锥体外形的飞行器能否产生锥动失稳是一个可以讨论的 命题。但是简单尖锥体、小钝锥体我们的风洞自由飞实验结果(M=5):会产生锥动失稳,甚至实验次数中出现锥 动失稳的比例达 100%。借助近十年来对多个飞行器锥动失稳的研究(这些飞行器外形变化、流场参数变化、对锥 动失稳的影响,模型风洞自由飞实验结果与飞行器空中飞行结果取得一致)观察到一个现象:改变飞行器尾部流动 状态,有利于控制锥动失稳。简单 10°半锥角尖锥体、小钝锥体模型在锥体后部表面加上小片条后,锥动失稳(M= 5)得到控制。

关键词:流动控制;尖、钝锥体锥动失稳;风洞自由飞实验 中图分类号:V211.7 文献标识码:A

0 引 言

超音速、高超音速小攻角状态下细长锥体能否产 生非平面锥运动失稳,是人们关心的一个题目。

1966 年文献[1] 给出了大量用风洞自由飞与自 由振动实验方法取得的 10°半锥角不同钝度、不同质 心位置模型的动态气动结果,实验 M 数有 3,4,4.5,5 及 10.2 等,模型钝度(r_n/r_b)有 0,0.182,0.4,0.6, 0.846 等,模型质心位置有 0.46,0.55,0.61 等,自由 振动方法的所有实验结果:俯仰力矩动导数 C^{n+e} < 0

(动稳定),实验俯仰角的最小振幅 θ 为 1°,

这里:

$$\bar{\theta} = \sqrt{\int_0^x \theta^2 dx/x} = \sqrt{\int_0^T \theta^2 dT/T}$$

风洞自由飞实验所有实验结果 $C_q^{**} < 0$ (动稳定), 但是除了 $M = 4, r_n/r_b = 0.4, 0.6$ 实验结果 θ 最小值 是 4° 外,其它所有状态(不同 M、不同 r_n/r_b 、不同 X_{eg}) θ 最小值至少大于 6°,而俯仰角振幅 θ 小于 6°时 的动稳定特性,文章没有回答。

1965年文献[2]给出 5°半锥角尖锥模型,在弹道 靶超音速小攻角下,自由飞轨迹中同时出现俯仰角与 1975年文献[3]给出了细长锥再人体在超音速 下的飞行记录数据,且由数据分析获得了在1°攻角下 再人体总攻角开始增大的非平面锥运动。

1987 年著名学者 L.E. Ericsson 指出^[4]:飞行器 自旋运动或锥动将使绕流的转捩状态发生变化,在超 音速状态下诱导产生使物体作锥动的侧向气动力,使 锥动振幅增大。

1985年文献[5],1993年文献[6]分别采用了弹 道靶与风洞自由飞实验方法给出了超音速下俯仰角、 偏航角同时出现的二种带翼飞行器的动不稳定结果。 飞行器飞行时若产生二个自由度耦合的非平面锥运 动,则在某个自由度(如俯仰角位移)的运动轨迹中 (如俯仰角-时间观测值 $\{\theta_j, t_j\}_{j=0,1,...,NN}$)必然包含 有二个频率分量,即 θ 可写成: $\theta = \theta_1 e^{q_1} \cos(\omega_1 t + q_1) + \theta e^{q_2} \cos(\omega_2 t + q_2) + C 。从此式出发对观测值$ $作参数拟合即可得拟合参数 <math>\theta_1, \theta_2, \varphi_1, \varphi_2, C_0 及 \omega_1, \omega_2, q_1, q_2$ 。正如文献[5,6]所示 $q_1 + q_2$ 的正负,即决 定 $C_m^{q_1 e}$ 的正负,从而判断非平面锥运动的稳定性。 这意味着只要记录单个自由度的运动轨迹(观测值)

偏航角的振荡,出现了非平面锥运动,且给出了锥模 型层流与湍流尾迹纹影照片,以判断边界层是否转 捩。

[•] 收稿日期: 2006-11-08; 修订日期: 2007-03-15.

作者简介: 贾区耀(1939-),男,上海市人,研究员,研究方向:非定常空气动力学.

值)也可判断锥运动的动稳定性。

1996 年二个弹头、弹身完全相同仅尾翼不同的 飞行器,作风洞自由飞实验,其中一个产生非平面锥 运动,且尾部区域内在振荡过程中绕流密度存在明显 的强弱交替变化, C^{m+*} > 0 为动不稳定;另一个无锥 运动,尾部区域在振荡过程中绕流密度无明显变化, C^{m+*} < 0 为动稳定,之后的飞行(打靶)试验验证了自 由飞风洞实验的预测。

1 简单锥体外形实验

今介绍 M = 5, 10°半锥角尖锥、钝锥风洞自由飞 实验测量气动动稳定特性结果。风洞气流参数 M = 5, $q_w = 34500$ m/s, $Re = \rho V D_b / \mu = 0.68 \times 10^6$, 10°半锥 角尖锥 A 模型: $r_n / r_b = 0$, $D_m = 32.3$ mm, 分加底盖与 无底盖二种, 10°半锥角钝锥 B 模型, $r_n / r_b = 0.2$, $D_m = 32.3$ mm, 各模型参数如表 1 所示。

简单锥模型在锥体后段长 0.7~1.0 处,上下左 右 4 个方向加 4 个片条即为 AP 与 BP 模型,片条在厚 度方向(径向)为锥面,内侧与模型外表完全一致。图 1 为模型外形。

图2~图4分别列出B₂、BP及AP模型风洞自由

表1 模型参数

Table 1 Model parameters

模型 序号	外形	λ _{cg}	m ₀ (g)	<i>I_s</i> (g·cm ²)
٨	尖锥模型	0.600	55.08	59.34
۸.	A 加底畫	0.606	68.04	68.04
A ₀ ⁺	重模型加底蓋	0.603	91.00	91.77
В	钝锥模型	0.600	55.21	58.52
B ₂	钝锥重模型	0.600	58.59	52.079
AP	尖锥加片条	0.600	89.48	80.904
BP	钝锥加片条	0.600	58.63	51.969

图 1 模型外形图 Fig.1 Model configuration

图 2 B₂模型风洞自由飞记录

Fig.2 Record of model B2 in wind tunnel free flight experiment

图 3 BP 模型风洞自由飞记录 Fig. 3 Record of model BP in wind tunnel free flight experiment

第 25 卷

图 4 AP 模型风洞自由飞记录 Fig.4 Record of model AP in wind tunnel free flight experiment

2 实验结果

实验结果列于表 2。 实验结果表明:

 (1) 尖锥 A(及 A₀、A₀*等)模型 4 次实验 θ均小 于 6°,且 C^{q+*}_m > 0,尖锥加片条 AP 模型 3 次实验
C^{q+*}_m < 0,钝锥 B(及 B2)模型 4 次实验 C^{q+*}_m 有正、有

0.1782

0.6806

0.6873

0.6938

0.2334

0.7070

0.6873

0.1991

负,钝锥加片条 BP 模型 3 次实验, C^{q,*} < 0。

(2) 尖锥 Cmax X ap 有精确解比较如下:

ł

本自由飞风洞实验结果 C_{ma}与精确解相比偏差约5%,文献[1]风洞自由飞结果与精确解相比,偏差约15%,文献[1]自由飞振动解与精确解相比偏差约5%。

表 2 风洞自由飞实验气动力系数 C_{meex}, C_{Leex}, C_{Dex}及 X_{opex}与精确解、文献[1]实验结果比较) Table 2 Aerodynamics coefficient C_{meex}, C_{Leex}, C_{Dex}, X_{cex}, obtained from wind tunnel

free flight experiment (compared with accurate results, result from [1])								
模型类别	· · · · ·							
Ar 10 Hr 1	A	A	Α,	A,⁺	A,	Ap	A _p	
头型厅节	m3	m4	m5	m8	06	07	08	
\overline{x}_{q}	0.600	0.600	0.606	0.603	0.600	0.600	0.600	
õ	4.33°	4.42°	5.30°	3.75°	3.65°	4.39°	4.69°	
ω _e	274	287	252	219	220.5	231.7	225.9	
C .	>0	>0	>0	>0	< 0	< 0	< 0	
C _{mass}	- 0.453	- 0.498	- 0.473	- 0.478	- 0.4310	- 0.4759	- 0.4523	
С_	- 0.4744	-0.4744	- 0.442	- 0.458	(精确解)			
с _т	- 0.453	- 0.453				(自由振动) ^[1]		
с <u>-</u>	- 0.539	- 0.539	- 0.506	-0.523		(风洞自由飞) ^[1])	
	1.833	1.408	1.962	1.785	1.667	1.695	1.644	
平均 Ciana		1.7	147 [′]			1.669		

0.1957

0.6883

0.6883

0.6873

0.1668

0.6830

0.1586

0.1644

0.6907

0.6873

(精确解)

0.1678

0.6883

0.1892

0.6839

0.6839

0.6873

с.

平均 С

x....

平均元

X

			狭衣 4				
模型类别		钝	锥			 钝锥 + 片条	
实验库县	В	В	B ₂	B ₂	B _p	B _p	B _p
****	mó	m7	01	05	02	03	04
X _{es}	0.600	0.600	0.606	0.600	0.600	. 0.600	0.600
ō	5.48°	3.07°	3.52*	3.15°	3.76°	4.88°	5.10°
ter a	214	211	246. 6	306.9	232.7	223.6	228.7
C <u>1</u> + 4	>0	< 0	< 0	· >0	< 0	< 0	< 0
C mar	- 0.277	- 0.269	- 0.3463	- 0.5364	- 0.3084	- 0.2847	- 0.2979
C _{■1}	-	-0.311(r _s /r _s =0.18)(自由振动) ^[1]					
CLora	2.082	1.601	2.029	3.169	1.599	1.606	1.542
平均 CLeer		2.	220			1.582	
C Des	0.1832	0.1677	0.1286	0.1534	0.1951	0.1857	0.1831
平均 D _{D∞}		0.1	1582			0.1880	
. X _{cpm}	0.0524	0.0646	0.0181	0.0685	0.0730	0.0676	0.0735
平均 X _{cpax}	•	0.0	634			0.0714	

说明: $\overline{X}_{qr} = -(D_{m}/l_{r}) \cdot C_{m}/C_{he}$;距质心无因次压心位量, $\overline{X}_{qr} = \overline{X}_{qr} + \overline{X}_{qr}, C_{he} = C_{h}/\hat{\theta}_{1} = (\overline{C}_{D}\sin\hat{\theta}_{1} + C_{Le}\hat{\theta}_{1}\cos\hat{\theta}_{1})/\hat{\theta}_{1}$

表3 实验散布度比较

Table 3	Comparisons	of	experimental	dispersion
---------	-------------	----	--------------	------------

模型类型	尖锥	 尖锥+片条	比值	钝锥	钝锥+片条	比值
参与实验数	4	3		4或(3)	3	
Δ <i>C</i> _	0.045	0.045	1/1	0.083	0.024	1/3.5
ΔC_{La}	0.554	0.051	1/10.8	0.481*	0.064	1/7.5
ΔĈ	0.0552	0.009	1/6.1	0.0546	0.012	1/4.6
ΔX,	0.0291	0.0077	1/3.8	0.0161	0.0059	1/2.7

*05次,C₂₀,C₂偏差太大,不作统计。

距质心无因次压心位置 \overline{X}_{g} ,与精确解相比偏差 为 0.001(A_0^+), ~ 0.003(A_0)及 0.007(二次 A 平均)。 文献[1]无 \overline{X}_{g} 值。

(3)四类模型重复实验的气动系数 C_L等的最大 值与最小值之差(实验散布度 ΔC_L)等以及无片条模 型与有片条模型 ΔC_L等比值见表 3。

3 结 论

在实验条件、实验方法、数据分析方法相同的条件下,加片条与不加片条细长锥体实验结果的散布度 相差如此之大,这种差异只能归结为绕流状态的不稳 定性,而不是系统误差造成的,即无片条的细长锥体 在"宏观"相同的条件下,飞行中有"不稳定"的绕流状态,使气动参数离散,甚至产生动不稳定锥运动,激励 气动阻尼($C_m^{*i} > 0$),尖锥比钝锥不稳定性更明显。 加片条后使绕流"稳定",气动参数离散缩小,无激励 气动阻尼($C_m^{*i} < 0$)。

参考文献:

- PRISLIN R H. High amplitude dynamic stability characteristics of blunt 10-degree cones [R]. AIAA Paper No.66-465.
- [2] SHEETZ N W. Free-flight boundary layer transition investigation at hypersonic speeds [R]. AIAA Paper 65-127.
- [3] CHRUSCIEL G F. Analysis of reentry vehicle behavior during boundary layer transition [J]. AIAA Journal, 1975, 13(2): 154-159.
- [4] ERICSSON L E. Coupling between vehicle motion and slender cone transition [J]. AlAA Journal, 1987, 25(9):1194-1198.
- [5] WHYTE R H. Subsonic and transonic aerodynamics of wraparound fin configuration [R]. AIAA Paper 85-106.

[6] 许可法等.旋转导弹风洞自由飞动导数实验研究 [J].空

气动力学学报,1993,11(3):257-262.

Measurement of aerodynamic dynamic stability characters of M = 5pointed and blunted cones with semi-cone angles equal 10° in wind tunnel free flight experiment

JIA Qu-yao, YANG Yi-nong, CHEN Nong (China academy of aerospace Aerodynamics, Beijing 100074 China)

Abstract: Simple pointed cone and small blunted cone aircrafts when in supersonic, hypersonic and small attack angle conditions produce conical destabilization or not is a subject worth discussing. Our wind tunnel free flight experiment results show that this kind of shape when M = 5 generates conical destabilization, and its occurrence rate reaches 100%. With our study of conical destabilization with several aircrafts in latest ten years, a phenomenon is observed: changing trailing flowage of aircrafts is beneficial to control of conical destabilization. Simple pointed cone and small blunted cone aircrafts with semicone angles 10° , after adding small edges on the tail of cone surface, conical destabilization (M = 5) is successfully controlled.

Key words: flow control; pointed and blunted cones conical destabilization; wind tunnel free flight experiment