MIAO Wenbo, LUO Xiaoguang, CHENG Xiaoli, SHEN Qing. Surface recombination effects on aerodynamic loads of hypersonic vehicles[J]. ACTA AERODYNAMICA SINICA, 2014, 32(2): 235-239. DOI: 10.7638/kqdlxxb-2012.0096
Citation: MIAO Wenbo, LUO Xiaoguang, CHENG Xiaoli, SHEN Qing. Surface recombination effects on aerodynamic loads of hypersonic vehicles[J]. ACTA AERODYNAMICA SINICA, 2014, 32(2): 235-239. DOI: 10.7638/kqdlxxb-2012.0096

Surface recombination effects on aerodynamic loads of hypersonic vehicles

More Information
  • Received Date: June 07, 2012
  • Revised Date: December 05, 2012
  • Available Online: January 07, 2021
  • For the research on high temperature real gas effects of hypersonic flows, numerical simulation is applied to study surface recombination effect on aerodynamic characteristics by solving the 3-D Navier-Stokes equations. The studied vehicles include two types, one is the CEV-alike configuration, and an other is the HTV2-alike configuration with high L/D. The results show that surface catalytic Had less influence on the wall pressure. The wave drag is almost the same at different catalytic conditions, while the surface friction differs from each other obviously around the high compressed area, but the difference is small in the major area and backward area. Surface recombination makes big molecule congregate to the wall, which causes larger velocity gradient. Wave drag is dominated to blunt body re-entry because there is a characteristic of base compressed flow. But to the high L/D flight, because the high compressed area is small, which contributes to the whole loads unapparent, and finally the whole drag coefficient varies with the surface recombination conditions very slightly.
  • [1]
    俞鸿儒. 高温真实气体效应的实验模拟[C]. 空气动力学研究文集, 1994, 第4卷.
    [2] 程晓丽, 苗文博, 周伟江. 真实气体效应对高超声速轨道器气动特性的影响[J]. 宇航学报, 2007(02): 23-28.
    [3] 黄志澄. 空天飞机的真实气体效应[J]. 气动实验与测量控制, 1994, (02): 1-9.
    [4] GOULARD R J. On catalytic recombination rates in hypersonic stagnation on heat transfer[J]. Jet Propulsion, 1958, 28(11): 737-745. [5] INGER G R. Non-equilibrium hypersonic stagnation flow with arbitrary surface catalycity including low Reynolds number effects[J]. Int. Jour. of Heat and Mass Transfer, 1966, (9): 755-772.
    [6] STEWART D. Surface catalysis and characterization of proposed candidate TPS for access-to space vehicles[R]. NASA TM-112206, 1997.
    [7] 苗文博, 程晓丽, 艾邦成. 来流条件对热流组分扩散项影响效应分析[J]. 空气动力学学报, 2011, 29(4): 476-480.
    [8] SEBO D E. Heating effects of multiple skip reentry trajectories[R]. ATR-9 I (6822)-l. El Segundo, California: The Aerospace Corporation, 1991.
    [9] 欧阳水吾. 高温非平衡空气绕流[M]. 国防工业出版社, 2001.
    [10]CHUL PARK. Assessment of two-temperature kinetic model for ionizing air[R]. AIAA-87-1574, 1987.
    [11]CHUL PARK. Two-temperature interpretation of dissociation rate data for N2 and O2[R]. AIAA-88-0458, 1988.
    [12]EDWARDS J R, LIOU M S. Low-diffusion flux-splitting methods for flows at all speeds[J]. AIAA Journal, 1998.
    [13]LIOU M S, STEFFEN C J. A new flux splitting scheme[J]. Journal of Computational Physics, 1993, (107): 23-39.
    [14]LIOU M S. A further development of the AUSM+ scheme towards 〖JP〗robust and accurate solutions for all speeds[R]. AIAA 2003-4116.
    [15]马汉东. 超声速/高超声速绕凸起物流动特性研究[D]. [博士学位论文]. 北京: 北京航空航天大学, 1997.
    [16]BENJAMIN M A, STEPHEN A W. Aerodynamic control on a lunar return capsule using trim-flaps[R]. AIAA 2007-855, 2007.
  • Related Articles

    [1]HUANG Jiahao, ZHAO Lei, ZHAO Rui. Local receptivity based on harmonic linearized Navier-Stokes equations[J]. ACTA AERODYNAMICA SINICA, 2024, 42(3): 69-82. DOI: 10.7638/kqdlxxb-2023.0068
    [2]Miao Xinyu, Zhu Yongfeng, Hu Yang. Computational research on aerodynamic forces of aircraft windshield wiper based on the N-S equations[J]. ACTA AERODYNAMICA SINICA, 2016, 34(6): 797-802. DOI: 10.7638/kqdlxxb-2015.0225
    [3]Qin Wanglong, Lyu Hongqiang, Wu Yizhao, Cheng Zhengwu. Discontinuous Galerkin method for 3-D compressible Navier-Stokes equations[J]. ACTA AERODYNAMICA SINICA, 2016, 34(5): 617-624. DOI: 10.7638/kqdlxxb-2015.0060
    [4]Yu Yong. Review on Parabolized Navier-Stokes (PNS) equation and Gao's PNS theory with inferences and applications[J]. ACTA AERODYNAMICA SINICA, 2015, 33(1): 54-65. DOI: 10.7638/kqdlxxb-2014.0062
    [5]ZUO Ying-tao, GAO Zheng-hong, HE Jun. Aerodynamic design method based on N-S equations and discrete adjoint approach[J]. ACTA AERODYNAMICA SINICA, 2010, 28(5): 509-512,.
    [6]ZUO Ying-tao, GAO Zheng-hong, ZHAN Hao. Aerodynamic design method based on N-S equations and discrete adjoint approach[J]. ACTA AERODYNAMICA SINICA, 2009, 27(1): 67-72.
    [7]XIONG Jun-tao, QIAO Zhi-de, HAN Zhong-hua. Aerodynamic optimization design of transonic airfoil and wing based on Navier-Stokes equations[J]. ACTA AERODYNAMICA SINICA, 2007, 25(1): 29-33,4.
    [8]WEI Ling, Ge Ning. The numerical simulation and test verification for 3-dimensional transonic Navier-Stokes equations inside a turbomachinery rotor[J]. ACTA AERODYNAMICA SINICA, 2005, 23(3): 350-354,.
    [9]Spectral element method in polar coordinate for incompressible Navier-Stokes equations[J]. ACTA AERODYNAMICA SINICA, 2004, 22(2): 216-219.
    [10]Effects of physical and grid scales in difference computing of the Navier-Stokes(NS) equations and computing generalized NS-equa tions[J]. ACTA AERODYNAMICA SINICA, 2001, 19(1): 1-7.

Catalog

    Article views (313) PDF downloads (1160) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return