Citation: | CHENG Han, YU Li, YANG Xuesong, WANG Lu. Numerical simulation of parachute opening process in finite mass situation[J]. ACTA AERODYNAMICA SINICA, 2014, 32(2): 258-263. DOI: 10.7638/kqdlxxb-2012.0101 |
[1] |
YU L, MING X. Study on transient aerodynamic characteristics of parachute opening process[J]. ACTA Mechanic Sinica, 2007, 23(6): 627-633.
[2] YU L, SHI X L, MING X. Numerical simulation of parachute during opening process[J]. ACTA Aeronautica et Astronautica Sinica, 2007, 28(1): 52-57. [3] PURVIS J W. Theoretical analysis of parachute inflation including fluid kinetics[R]. AIAA 81-1925, 1981. [4] STEIN K R, BENNEY R J, STEEVES E C. A computational model that couples aerodynamic structural dynamic behavior of parachutes during the opening process[R]. NASA ADA 264115, 1993. [5] KIM Y S, PESKIN C S. 3-D parachute simulation by the immersed boundary method[J].Computers and Fluids, 2009, 38: 1080-1090. [6] BEN T, ROLAND S. Finite mass simulation techniques in LS-DYNA[R]. AIAA 2011-2592, 2011. [7] KENJI T. Fluid structure interaction modeling of spacecraft parachutes for simulation-based design[J]. Journal of Applied Mechanics, 2012, 79: 1-9. [8] SOULI M, OUAHSINE A, LEWIN L. ALE formulation for fluid-structure interaction problems[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190: 659-675. [9] CASADEI F, HALLEUX J P, SALA A, et al. Transient fluid-structure interaction algorithms for large industrial applications[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 3081-3110. [10]CALVIN K L. Experimental investigation of full-scale and model parachute opening[R]. AIAA 1984-0820, 1984. [11]EWING E G, KNACKE T W, BIXBY H W. Recovery systems design guide[M]. Beijing: Aviation Industry Press, 1988. [12]AQUELET N, WANG J, TUTT B A, et al. Euler-lagrange coupling with deformable porous shells[C]. ASME Pressure Vessels and Piping Division Conference. Vancoucer BC Canada, 2006. [13]RONG W, CHEN X, CHEN G L. The study of the parachute opening load in low atmospheric density[J]. Spacecraft Recovery and Remote Sensing, 2006, 27(4): 7-11. |
[1] | ZHANG Yang, PU Tianmei, ZHOU Chunhua, OUYANG Hongyang, TONG Xudong. Fluid-structure interaction simulation of parachute inflation based on an immersed boundary method and large eddy simulation[J]. ACTA AERODYNAMICA SINICA, 2025, 43(2): 96-109. DOI: 10.7638/kqdlxxb-2024.0079 |
[2] | ZHANG Yantai, SUN Jianhong, HOU Bin, XU Changyue, FENG Chuanqi. The inflation process and safety analyses of a parachute ejected from civil aircrafts[J]. ACTA AERODYNAMICA SINICA, 2022, 40(2): 79-87. DOI: 10.7638/kqdlxxb-2021.0010 |
[3] | Ma Xiaodong, Guo Rui, Liu Rongzhong, Hu Zhipeng, Lyu Shengtao. Study on decelerating and spinning efficiency of vortex ring parachute system[J]. ACTA AERODYNAMICA SINICA, 2017, 35(1): 57-61. DOI: 10.7638/kqdlxxb-2015.0003 |
[4] | Yang Xue, Yu Li, Li Yunwei, Li Yanjun. Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J]. ACTA AERODYNAMICA SINICA, 2015, 33(5): 714-719. DOI: 10.7638/kqdlxxb-2014.0081 |
[5] | GUO Rui, LIU Rong-zhong, HU Zhi-peng, MA Xiao-dong. Study on the inflated stability and motional characteristics of vortex ring parachute canopy[J]. ACTA AERODYNAMICA SINICA, 2013, 31(6): 733-738. |
[6] | FAN Hong-ming, HE Kai-yuan, LI Xian-ting. Finite element method simulation of a duct flow[J]. ACTA AERODYNAMICA SINICA, 2009, 27(1): 83-87. |
[7] | YU Li, MING Xiao, CHENG Li-jun. Experimental investigation on the flow-field of different vent canopy[J]. ACTA AERODYNAMICA SINICA, 2008, 26(1): 19-25. |
[8] | YU Li, MING Xiao. Investigation on the characteristics of parachute flow-field[J]. ACTA AERODYNAMICA SINICA, 2007, 25(3): 306-310. |
[9] | WANG Jian-ping. Fundamental problems in spectral methods and finite spectral method[J]. ACTA AERODYNAMICA SINICA, 2001, 19(2): 161-171. |
[10] | WANG Xu, GU Chuan-gang. A Co-Located Upwind Scheme in Finite Element Method[J]. ACTA AERODYNAMICA SINICA, 2000, 18(4): 495-499. |