Zhao Keliang, Zhou Feng, Zhang Miao. Angle of attack sensor orientation for civil aircraft[J]. ACTA AERODYNAMICA SINICA, 2015, 33(3): 420-426. DOI: 10.7638/kqdlxxb-2013.0074
Citation: Zhao Keliang, Zhou Feng, Zhang Miao. Angle of attack sensor orientation for civil aircraft[J]. ACTA AERODYNAMICA SINICA, 2015, 33(3): 420-426. DOI: 10.7638/kqdlxxb-2013.0074

Angle of attack sensor orientation for civil aircraft

More Information
  • Received Date: July 10, 2013
  • Revised Date: October 29, 2013
  • Available Online: January 07, 2021
  • Angle of attack(AOA) sensor orientation for civil aircraft has been researched in this paper. According to the requirements of AOA sensor orientation in Chinese aviation industry standard HB regulations, the sideslip sensitive analysis method and AOA calibrating analysis method have been developed. Air flow fields have been calculated with the conventional nose configuration and streamline nose configuration by numerical simulation, and the sideslip sensitive analysis and AOA calibrating analysis have been used to obtain the most proper location to install the AOA sensor. An identical AOA sensor installing rule has been obtained with two different nose configurations i. e. the optimized position of AOA sensor is in the nose maximum half-breadth range of 48%-100% in stream-wise direction. The installing rule has been applied to the conventional nose configuration. Moreover, a validated wind tunnel test has been conducted. The test results of sideslip sensitivity and AOA calibration showed significant agreement with CFD results, which implying the analysis methods and relevant AOA sensor installing rule are applicable. Furthermore, the obtained method and rule have the potential to be utilized on any other aircrafts with similar nose configuration.
  • [1]
    Huang Fenghua, Wang Ling. Summary of the main control method of advancedcontrol technology[C]//19th Electrical Theory Symposium, 2007. (in Chinese) 黄凤华, 王玲. 先进控制技术的主要控制方法综述[C]//第十九届电工理论学术年会论文集, 2007.
    [2]
    Tang Huanghua. Installation and calibration of angle of attack[J]. Hongdu Science and Technology, 1994, (02): 1-7. (in Chinese) 汤黄华. 攻角传感器的安装与校准[J]. 洪都科技, 1994, (2): 1-7.
    [3]
    Yao Zongxin, Liang Dakai, Li Ming. Optimizing design of measuring position of flush air data sensor installed on aircraft based on fuzzy logic[J]. Acta Metrological Sinica, 2004, 25(3): 257-261. (in Chinese) 姚宗信, 梁大开, 李明. 基于模糊逻辑的嵌入式飞机大气数据传感器测量位置优化设计. 计量学报[J], 2004, 25(3): 257-261.
    [4]
    Cai Guohua. Calibration test for positional error of null-seeking differential pressure transducer in low speed wind tunnel[J]. Experiments and Measurements in Fluid Mechanics, 1990, (4): 75-81. (in Chinese) 蔡国华. 归零压差式攻角传感器位置误差低速风洞校测试验[J]. 流体力学实验与测量, 1990, (4): 75-81.
    [5]
    Cai Guohua. Calibration techniques for positional error of angle transducers with null-seeking differential pressure transducer in low speed wind tunnel[J]. Aerospace Shanghai, 1997, (5): 31-35. (in Chinese) 蔡国华. 归零压差式角度传感器位置误差低速风洞校测实验技术[J]. 上海航天, 1997, (5): 31-35.
    [6]
    Meng Bo. Research on the measurement technology of air data in transonic and hypersonic flight[D]. Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese) 孟博. 跨音速/高超音速大气数据测量技术研究[D]. 南京航空航天大学, 2011.
    [7]
    Ou Lei. Assessment of the uncertainly of air data measurement[C]//2007 Metrology & Measurement Technology, 2007. (in Chinese) 欧雷. 大气数据测量不确定度评定[C]// 2007年度中国航空学会计量技术专业委员会计量与质量专题学术交流会论文集, 2007.
    [8]
    Peng Zhizhuan, Wang Ding, Lu Bo, et al. Detection system of aero attack and sideslip angle sensor[J]. Journal of Transducer Technology, 2004, 23(9): 59-60. (in Chinese) 彭志专, 王鼎, 陆波, 等. 飞机攻角侧滑角传感器检测系统[J]. 传感器技术, 2004, 23(9): 59-60.
    [9]
    Qu Wenxuan. CID(GC-1) null-seeking differential pressure type angle of attack[J]. Measurement & Control Technology, 1980, (2): 37-49. (in Chinese) 屈文选. CID(GC-1)型压差归零式迎角传感器[J]. 测控技术, 1980, (2): 37-49.
    [10]
    Qian Moshu, Xiong Ke. Design of test system for air data of UAV[J]. Journal of Guilin University of Electronic Technology, 2006, 26(2): 97-99. (in Chinese) 钱默抒, 熊克. 无人机大气数据检测系统的设计[J]. 桂林电子科技大学学报, 2006, 26(2): 97-99.
    [11]
    Zhang Xiaoping, Song Zhenyu. Design of automatic test system for air data[J]. Journal of Naval Aeronautical and Astronautical University, 2008, 23(3): 66-68. (in Chinese) 张小平, 宋振宇. 大气数据自动测控系统设计[J]. 海军航空工程学院学报, 2008, 23(3): 66-68.
    [12]
    Du Yuxuan. The design and study of wind tunnel angle of attack system[D]. Southwest Jiao Tong University, 2012. (in Chinese) 杜雨轩. 风洞攻角系统的设计与研究[D]. 西南交通大学, 2012.
    [13]
    Shao Xiaojie. Research of algorithm of the flush air data sensing (FADS) System[D]. Nanjing University of Aeronautics and Astronautics, 2005. (in Chinese) 邵笑杰. 嵌入式飞行数据传感系统的算法研究[D]. 南京航空航天大学, 2005.
    [14]
    Meng Bo, Li Rongbing, Liu Jianye, et al. Research on compensation-correction of transonic angle-of-attack based on improved back-propagation algorithm[J]. Systems Engineering and Electronics, 2010, 32(12): 2681-2685. (in Chinese) 孟博, 李荣冰, 刘建业, 等. 基于改进反向传播算法的跨音速攻角补偿修正研究[J]. 系统工程与电子技术, 2010, 32(12): 2681-2685.
    [15]
    Li Qichang, Liu Jinfan, Liu Xin, et al. The primary study of 3-point calculation method for the flush air data system. Acta Aerodynamica Sinica, 2014, 32(03): 360-363. (in Chinese) 李其畅, 刘劲帆, 刘昕, 等. 嵌入式大气数据三点解算方法初步研究[J]. 空气动力学学报, 2014, 32(03): 360-363.
    [16]
    HB 6763-93. Installation of incidence and sideslip system[S]. Aviation Industry Standard, 1996. (in Chinese) HB 6763-93. 攻角和侧滑角系统的安装[S]. 航空工业标准, 1996.
    [17]
    Goodrich Corporation Sensor Systems. Model 0861DV1 angle of attack sensor[Z]. USA: Rosemount Aerospace Inc., 2005. 古德里奇公司传感器系统. 0861DV1型攻角传感器[Z]. 美国: 罗斯蒙特宇航公司, 2005.
    [18]
    Goodrich Corporation Sensor Systems. Model 0861CAL angle of attack sensor[Z]. USA: Rosemount Aerospace Inc., 2005. 古德里奇公司传感器系统. 0861CAL型攻角传感器[Z]. 美国: 罗斯蒙特宇航公司, 2002.
  • Related Articles

    [1]KONG Yinan, WU Bin, WANG Qing, CHEN Gong, YU Jing. Aerodynamic characteristics modeling of post-stall re-orientation maneuver[J]. ACTA AERODYNAMICA SINICA, 2024, 42(5): 72-80. DOI: 10.7638/kqdlxxb-2023.0049
    [2]LI Shilong, YANG Xiaolei, YUAN Xianxu, GUO Qilong. Numerical study on the orientation effects of roughness elements on turbulence statistics[J]. ACTA AERODYNAMICA SINICA, 2023, 41(4): 73-83. DOI: 10.7638/kqdlxxb-2022.0108
    [3]YANG Shipu, SUN Yifeng, FANG Yang, YANG Hui. Aerodynamic analysis of AOA sensor location design on civil aircraft[J]. ACTA AERODYNAMICA SINICA, 2019, 37(2): 242-245. DOI: 10.7638/kqdlxxb-2016.0097
    [4]ZHOU Feng, ZHAO Keliang, ZHANG Miao, WANG Junhong. Static port orientation rule for civil aircraft[J]. ACTA AERODYNAMICA SINICA, 2017, 35(6): 823-827. DOI: 10.7638/kqdlxxb-2015.0140
    [5]Zhang Meihong, Zhang Dongyun, Wang Meili, Xue Fei, Ma Tuliang. CFD prediction and analysis of civil aircraft spillage drag based on thrust-drag bookkeeping method[J]. ACTA AERODYNAMICA SINICA, 2016, 34(5): 625-630. DOI: 10.7638/kqdlxxb-2014.0141
    [6]LI Qin, SUN Dong, ZHENG Yong-kang, ZHANG Han-xin. On a class of center-typed third order difference scheme orienting to engineering utilizations[J]. ACTA AERODYNAMICA SINICA, 2013, 31(4): 466-472.
    [7]SHI Xiao-ming, YANG Bing-yuan, Li Hai-dong, TANG Guo-an. Supersonic flutter analysis of wing-fuselage complete vehicle of high attack angle with local piston theory based on CFD technology[J]. ACTA AERODYNAMICA SINICA, 2012, 30(5): 664-667.
    [8]WANG Xunnian, LI Zhengchu, CHEN Zhengwu, CUI Hongfang, ZHANG Junlong. Researching on aerodynamic noise sources identification technology in anechoic wind tunnel[J]. ACTA AERODYNAMICA SINICA, 2012, 30(3): 284-290.
    [9]Research on the orientation of cylindrical particles in gas-solid two-phase pipe Flows[J]. ACTA AERODYNAMICA SINICA, 2003, 21(2): 237-243.
    [10]The study of Object-Oriented technology applied in zone divided parallel calculation in CFD[J]. ACTA AERODYNAMICA SINICA, 2002, 20(z1): 45-51.

Catalog

    Article views (277) PDF downloads (549) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return