SUN Yan, HUANG Yong, WANG Yuntao, MENG Dehong, WANG Hao. Development and precision validation of static aeroelastic computational module on flow solver TRIP[J]. ACTA AERODYNAMICA SINICA, 2017, 35(5): 620-624. DOI: 10.7638/kqdlxxb-2015.0154
Citation: SUN Yan, HUANG Yong, WANG Yuntao, MENG Dehong, WANG Hao. Development and precision validation of static aeroelastic computational module on flow solver TRIP[J]. ACTA AERODYNAMICA SINICA, 2017, 35(5): 620-624. DOI: 10.7638/kqdlxxb-2015.0154

Development and precision validation of static aeroelastic computational module on flow solver TRIP

More Information
  • Received Date: August 25, 2015
  • Revised Date: October 13, 2015
  • Available Online: January 07, 2021
  • A static aeroelastic computational module is developed on the flow solver TRIP. Firstly, the frame, main component units and coupling strategy of the static aeroelastic computational module are introduced briefly. Then numerical methods used in the component units are described in detail. Finally, the static aeroelastic computational module is tested and validated through three cases:high respect-ratio wing, DLR-F6 wing-body model and HIRENASD wing model. The computational results of high respect-ratio wing show that flexible matrix method, modal superposition method and finite element method can have same deformation results when the structure modes are selected properly. The result consistency of DLR-F6 or HIRENASD model among different solvers demonstrates that the static aeroelastic computational module has adopted a correct algorithm procedure. The results consistency of DLR-F6 or HIRENASD model between computations and tests shows that the present static aeroelastic computational module has a good prediction precision.
  • [1]
    Mouton S, Sant Y, Lyonnet M. Predication of the aerodynamic effect of model deformation during transonic wind tunnel tests[J]. International Journal of Engineering Systems Modelling and Simulation, 2013, 5(1-3):44-56. doi: 10.1504/IJESMS.2013.052371
    [2]
    孙岩, 张征宇, 邓小刚, 等.风洞模型静弹性变形对气动力影响研究[J].空气动力学学报, 2013, 31(3):294-300. http://www.kqdlxxb.com/CN/abstract/abstract11260.shtml
    [3]
    Owens L R, Wahls R A, Rivers S M. Off-design Reynolds number effects for a supersonic transport[J]. Journal of Aricraft, 2005, 42(6):1427-441. doi: 10.2514/1.10433
    [4]
    Levy D W, Laflin K R, Tinoco E N, et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213. doi: 10.2514/1.C032389
    [5]
    Heeg J, Chwalowski P, Florance J P, et al. Overview of the aeroelastic predication workshop[R]. AIAA 2013-0783, 2013.
    [6]
    杨超, 王立波, 谢长川, 等.大变形飞机配平与飞行载荷分析方法[J].中国科学(E辑:技术科学), 2012, 42(10):1137-1147. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201210006.htm
    [7]
    徐敏, 邱滋华, 裴曦.基于CFD/CSD/CAA耦合的声气动弹性仿真技术在壁板颤振中的应用[J].强度与环境, 2013, 40(5):16-24. http://www.cnki.com.cn/Article/CJFDTOTAL-QDHJ201305004.htm
    [8]
    黄炜, 陆志良, 唐迪, 等.基于多点约束的大展弦比机翼静气动弹性计算[J].北京航空航天大学学报, 2014, 40(12):1666-1671. http://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201412005.htm
    [9]
    Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows[R]. AIAA-92-0439, 1992.
    [10]
    Menter F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605. doi: 10.2514/3.12149
    [11]
    王运涛, 王光学, 张玉伦. DPWⅢ机翼和翼身组合体构型数值模拟[J].空气动力学学报, 2011, 29(3):264-269. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201103001.htm
    [12]
    王运涛, 张书俊, 孟德虹. DPW4翼/身/平尾组合体的数值模拟[J].空气动力学学报, 2013, 31(6):739-744. http://www.kqdlxxb.com/CN/abstract/abstract11382.shtml
    [13]
    Ritter M. Static and forced motion aeroelastic simulations ofthe HIRENASD wind tunnel model[R]. AIAA 2012-1633, 2012.
    [14]
    Rendall T C S, Allen C B. Unified fluid-structure interpolation and mesh motion using radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2008, 74:1519-1559. doi: 10.1002/(ISSN)1097-0207
    [15]
    孙岩, 邓小刚, 王运涛, 等. RBF_TFI结构动网格技术在风洞静气动弹性修正中的应用[J].工程力学, 2014, 31(10):228-233. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201410037.htm
    [16]
    孙岩, 邓小刚, 王光学, 等.基于径向基函数改进的Delaunay图映射动网格方法[J].航空学报, 2014, 35(3):727-735. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201403013.htm
    [17]
    Burner A W, Goad W K, Massey E A, et al. Wind deformation measurements of the DLR-F6 transport configuration in the national transonic facility[R]. AIAA 2008-6921, 2008.
    [18]
    Ritter M, Hassan D. Assesment of the ONERA/DLR numerical aeroelastics predication capabilities on the HIRENASD configuration[R]. IFASD-2011-109, 2011.
  • Related Articles

    [1]Cover[J]. ACTA AERODYNAMICA SINICA, 2023, 41(6).
    [2]cover[J]. ACTA AERODYNAMICA SINICA, 2022, 40(6).
    [7]XIAO Guang-ming, FENG Yi, TANG Wei, GUI Ye-wei. Aerodynamics configuration conceptual design for ATLLASM6 analog transport aircraft[J]. ACTA AERODYNAMICA SINICA, 2012, 30(5): 592-596.
    [8]SUN Xiu-ling, LI Liang, LI Guo-jun. Numerical study of the effects of condensation of moist air on the aerodynamic characteristics of the ONERA M6 wing[J]. ACTA AERODYNAMICA SINICA, 2010, 28(2): 143-148.
    [9]WANG Yun-tao, WANG Guang-xue, ZHANG Yu-lun. Drag prediction of DLR-F6 configuration with TRIP2.0 software[J]. ACTA AERODYNAMICA SINICA, 2009, 27(1): 108-113.
    [10]Drag prediction of DLR-F4 from AIAA drag prediction workshop[J]. ACTA AERODYNAMICA SINICA, 2003, 21(4): 454-458.
  • Cited by

    Periodical cited type(8)

    1. 郭秋亭,孙岩,郭正,刘光远. 风洞试验雷诺数/静气动弹性效应分离方法. 航空学报. 2022(11): 452-462 .
    2. 王昊,王运涛,孟德虹,王毅. 基于广义Richardson外插方法的颤振模拟耦合时间精度研究. 空气动力学学报. 2021(02): 81-90 . 本站查看
    3. 孙岩,王昊,江盟,岳皓,孟德虹. NNW-FSI软件静气动弹性耦合加速策略设计与实现. 航空学报. 2021(09): 224-233 .
    4. 黄勇,孟德虹,罗振先,孙岩,王运涛,王晓军,孙俊峰. 高性能计算支持的静气弹优化设计方法. 民用飞机设计与研究. 2020(03): 96-111 .
    5. 孙岩,Andrea Da Ronch,王运涛,孟德虹,洪俊武,许贤超. 基于非线性涡格法的快速静气动弹性数值模拟技术. 气体物理. 2020(06): 26-38 .
    6. 杨小川,王运涛,孟德虹,缪涛,王伟. 不同分布式螺旋桨转向组合下的机翼滑流效应研究. 空气动力学学报. 2019(01): 89-98 . 本站查看
    7. 杨超,杨澜,谢长川. 大展弦比柔性机翼气动弹性分析中的气动力方法研究进展. 空气动力学学报. 2018(06): 1009-1018+983 . 本站查看
    8. 王运涛,孟德虹,孙岩,洪俊武. 超大规模气动弹性数值模拟软件研制(2017). 空气动力学学报. 2018(06): 1019-1026 . 本站查看

    Other cited types(3)

Catalog

    Article views (221) PDF downloads (609) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return