YU Min, YUAN Xiangjiang, ZHU Zhibin. Assessment of inflow boundary conditions for hypersonic wall bounded turbulent flows[J]. ACTA AERODYNAMICA SINICA, 2017, 35(6): 772-776. DOI: 10.7638/kqdlxxb-2015.0177
Citation: YU Min, YUAN Xiangjiang, ZHU Zhibin. Assessment of inflow boundary conditions for hypersonic wall bounded turbulent flows[J]. ACTA AERODYNAMICA SINICA, 2017, 35(6): 772-776. DOI: 10.7638/kqdlxxb-2015.0177

Assessment of inflow boundary conditions for hypersonic wall bounded turbulent flows

More Information
  • Received Date: September 09, 2015
  • Revised Date: December 14, 2015
  • Available Online: January 07, 2021
  • It is critically important to generate turbulent fluctuating inflow boundary conditions for numerical simulation in solving hypersonic turbulent boundary layers. A high-order finite-difference method was applied to investigate the inflow generation methods. Turbulent inflow boundary conditions are broadly classified into natural transition methods, recycling/rescaling-based methods, and synthetic turbulence generators. To investigate the feasibility of inflow generation methods at high Mach number, the simulation of a Mach 6 boundary layer over an isothermal flat plate was carried out. The validity and limitations of different inflow boundary conditions were also discussed. Several feasible methods were studied in great detail including natural transition from laminar to turbulent flows, bypass transition induced by wavy wall configuration, and turbulence generation via reintroducing the flow field obtained from temporal developing turbulent flow. The limitation of the recycling/rescaling method was also proposed in hypersonic flow condition. By analyzing the flow filed and statistical results, we summarized and discussed the advantages and drawbacks about these inflow generation approaches, and further assessed these methods. Compared with natural transition method, bypass transition method and reintroducing method can promote transition to turbulent flow field efficiently. But turbulent field has better quality generated by natural transition route. The paper can be a reference of imposing an inflow boundary condition for wall bounded turbulent flows at high Mach number.
  • [1]
    Lund T S, Wu X H, Squires K D. Generation of turbulent in flow data for spatially-developing boundary layer simulations[J]. Journal of Computational Physics, 1998, 140(2):233-258. doi: 10.1006/jcph.1998.5882
    [2]
    Sivasubramanian J, Fasel H F. Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6:Fundamental breakdown[J]. Journal of Fluid Mechanics, 2015, 768:175-218. doi: 10.1017/jfm.2014.678
    [3]
    Xu S, Martin M P. Assessment of inflow boundary conditions for compressible turbulent boundary layers[J]. Physics of Fluids, 2004, 16(7):2623-2639. doi: 10.1063/1.1758218
    [4]
    Batten P, Goldberg U, Chakravarthy S. Interfacing statistical turbulence closures with large-eddy simulation[J]. AIAA Journal, 2004, 42(3):485-492. doi: 10.2514/1.3496
    [5]
    黄章峰, 周恒.湍流边界层的空间模式DNS的入口条件[J].中国科学(G辑:物理学力学天文学), 2008, 38(3):310-318. http://www.cqvip.com/Main/Detail.aspx?id=29075163
    [6]
    董明, 周恒.超声速钝锥湍流边界层DNS入口边界条件的研究[J].应用数学和力学, 2008, 29(8):893-904. http://d.wanfangdata.com.cn/Periodical/yysxhlx200808002
    [7]
    逯学志, 黄章峰, 罗纪生.湍流入流条件在强迫转捩研究中的应用[J].空气动力学学报, 2012, 30(6):749-753. http://www.kqdlxxb.com/CN/abstract/abstract11224.shtml
    [8]
    陈逖, 刘卫东, 范晓樯, 等. "回收/调节"方法在混合LES/RANS模拟方法中的应用[J].航空动力学报, 2011, 26(6):1215-1222. http://d.wanfangdata.com.cn/Periodical/hkdlxb201106003
    [9]
    Xiao X D, Edwards J R, Hassan H A. inflow boundary conditions for hybrid large eddy/Reynolds averaged Navier-Stokes simulations[J]. AIAA Journal, 2003, 41(8):1481-1489. doi: 10.2514/2.2130
    [10]
    Schneider S P. Effects of roughness on hypersonic Boundary-Layer transition[R]. AIAA 2007-305, 2007.
    [11]
    Berry S A. Discrete roughness transition for hypersonic flight vehicles[R]. AIAA 2007-307, 2007.
    [12]
    刘建新. 小攻角钝锥高超声速边界层的扰动演化[D]. 天津: 天津大学, 2010.
    [13]
    Jiang G S, Shu C W. Efficient implementation of weighted ENO Schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228. doi: 10.1006/jcph.1996.0130
    [14]
    Gottlieb S, Shu C W. Total variation diminishing Runge-Kutta schemes[J]. Mathematics of computation, 1998, 67(221):73-85. doi: 10.1090/mcom/1998-67-221
    [15]
    Yu M, Luo J S. Nonlinear interaction mechanisms of disturbances in supersonic flat-plate boundary layers[J]. Science China:Physics Mechanics and Astronomy, 2014, 57(11):2141-2151. doi: 10.1007/s11433-014-5568-0
    [16]
    White F M. Viscous fluid flow[M]. McGraw-Hill Education, 2005.
  • Related Articles

    [1]AI Mengqi, MA Yumin, ZHANG Yanjun. Analysis method of the effects of skin waviness based on RVSM operation requirement[J]. ACTA AERODYNAMICA SINICA, 2023, 41(11): 20-27. DOI: 10.7638/kqdlxxb-2022.0158
    [2]MENG Shuang, ZHOU Dan, LI Xueliang, BI Lin. Accurate and efficient wall distance calculation method for Cartesian grids[J]. ACTA AERODYNAMICA SINICA, 2023, 41(7): 93-101. DOI: 10.7638/kqdlxxb-2021.0359
    [3]WEI Zhiqiang, QU Qiulin, LIU Wei, XU Xiaohao. Review on the artificial calculating methods for aircraft wake vortex flow field parameters[J]. ACTA AERODYNAMICA SINICA, 2019, 37(1): 33-42. DOI: 10.7638/kqdlxxb-2017.0160
    [4]Gao Yisheng, Wu Yizhao, Xia Jian, Xu Zhaoke. A parallel full implicit flow solver based on weakly imposed wall boundary condition[J]. ACTA AERODYNAMICA SINICA, 2017, 35(1): 46-56. DOI: 10.7638/kqdlxxb-2016.0121
    [5]SUN Liming, CAO Shuyang, LI Ming, YANG Qing, ZHANG Enzhen. Large-eddy simulation of fully developed turbulent flow over a wavy surface[J]. ACTA AERODYNAMICA SINICA, 2014, 32(4): 534-543. DOI: 10.7638/kqdlxxb-2012.0172
    [6]XU Rang-shu, LIN Rui, LI Guo-wen, LI Guang-li. Study on near wall high subsonic flow simulation facility[J]. ACTA AERODYNAMICA SINICA, 2013, 31(2): 209-212. DOI: 10.7638/kqdlxxb-2011.0115
    [7]LIU Yan-hua, LIN Jian-zhong. Research on method of momens of particulate parameter distribution in multiphase flow[J]. ACTA AERODYNAMICA SINICA, 2009, 27(6): 656-663.
    [8]Ji Chuqun, Li Jun. Application of the Godunov Method in the Numerical Simulation of Complicated Flow Fields[J]. ACTA AERODYNAMICA SINICA, 2000, 18(2): 132-137.
    [9]Ni Zhangsong, He Dexin. Research and Application on Wall Interference Correction Method of Equivalent Kinetic Pressure[J]. ACTA AERODYNAMICA SINICA, 2000, 18(1): 86-91.
    [10]Zhang Qingli, Li Jingbai. Control of Boundary Layer Transition Using Active Compliant Wall Motion[J]. ACTA AERODYNAMICA SINICA, 1999, 17(3): 333-338.
  • Cited by

    Periodical cited type(1)

    1. 杨武兵,沈清,朱德华,禹旻,刘智勇. 高超声速边界层转捩研究现状与趋势. 空气动力学学报. 2018(02): 183-195 . 本站查看

    Other cited types(2)

Catalog

    Article views (206) PDF downloads (337) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return