Zhang Heng, Li Jie, Gong Zhibin. Numerical simulation of the stall separated flow around an iced airfoil based on IDDES[J]. ACTA AERODYNAMICA SINICA, 2016, 34(3): 283-288. DOI: 10.7638/kqdlxxb-2015.0223
Citation: Zhang Heng, Li Jie, Gong Zhibin. Numerical simulation of the stall separated flow around an iced airfoil based on IDDES[J]. ACTA AERODYNAMICA SINICA, 2016, 34(3): 283-288. DOI: 10.7638/kqdlxxb-2015.0223

Numerical simulation of the stall separated flow around an iced airfoil based on IDDES

More Information
  • Received Date: December 20, 2015
  • Revised Date: December 27, 2015
  • Available Online: January 07, 2021
  • The accurate prediction of complex flow phenomena leading by ice accreting of airfoils demands the improvement of turbulent flow prediction methods. The improved delayed detached eddy simulation (IDDES) based on the SST turbulent model is applied in the study of numerical simulation about complex stall separation flow cased by a typical dual horn ice on the leading edge. Comparing with the experimental measurements, numerical simulation results show that IDDES can achieve good prediction results near the wall, effectively resolve middle and small scale vortex structures in the flow separation area and more accurately describe the reattachment position and shape characteristics of the large scale time-averaged separation bubble for such separation flow problem. It is demonstrated that the method is suitable for the analysis of the complex flow after the airfoil icing. At the same time, the calculation results show that when the iced airfoil is near the stall point, the unstable vortex separation and transport process of the shear layer behind the horn ice promote the mixing between the external and reversing flow regions. This effect leads the unsteady reattachment phenomenon of separated flow.
  • [1]
    Gurbacki H M, Bragg M B. Unsteady flowfield about an iced airfoil[R]. AIAA 2004-0562.
    [2]
    Broeren A P, Bragg M B, Addy H E, et al. Effect of high-fidelity ice accretion simulations on the performance of a full-scale airfoil model[R]. AIAA 2008-434.
    [3]
    Ansell P J, Bragg M B. Measurement of unsteady flow reattachment on an airfoil with a leading-edge horn-ice shape[R]. AIAA 2012-2797.
    [4]
    Ansell P J, Bragg M B. Characterization of ice-induced low-frequency flowfield oscillations and their effect on airfoil performance[R]. AIAA 2013-2673.
    [5]
    Spalart P R, Jou W H, Strelets M, et al. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[M]. Los Angles: Greyden Press, 1997.
    [6]
    Mogili P, Thompson D S, Choo Y, et al. RANS and DES computations for a wing with ice accretion[R]. AIAA 2005-1372.
    [7]
    Thompson D S, Mogili P. Detached-eddy simulations of separated flow around wings with ice accretions: year one report[R]. NASA CR-2004-213379.
    [8]
    Lorenzo A, Valero E, De-Pablo V. DES/DDES post-stall study with iced airfoil[R]. AIAA 2011-1103.
    [9]
    Spalart P R, Deck S, Shur M, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181-195.
    [10]
    Travin A K, Shur M L, Spalart P R, et al. Improvement of delayed detached-eddy simulation for LES with wall modeling[C]//European Conference on Computational Fluid Dynamics. The Netherlands: TU Delft, 2006.
    [11]
    Addy H E. Ice accretions and icing effects for modern airfoils[R]. NASA TP-2000-210031.
    [12]
    Broeren A P, Bragg M B, Addy H E. Flowfield measurements about an airfoil with leading-edge ice shapes[J]. Journal of Aircraft, 2006, 43(4): 1226-1234.
    [13]
    Spalart P R. Young-person's guide to detached-eddy simulation grids[R]. NASA CR-2001-211032.
    [14]
    Menter F R. Two-equation eddy viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
    [15]
    Nikitin N V, Nicoud F, Wasistho B, et al. An approach to wall modeling in large-eddy simulations[J]. Physic of Fluids, 2005, 12(7): 1629-1632.
    [16]
    Alam M F, Thompson D S, Walters D K. Hybrid Reynolds-averaged Navier-Stokes/large-eddy simulation models for flow around an iced wing[J]. Journal of Aircraft, 2015, 51(1): 244-256.
    [17]
    Hunt J, Wray A, Moin P. Proceedings of the 1988 summer program[R]. Stanford: Center for Turbulence Research, 1988.
  • Related Articles

    [1]DU Menghua, TIAN Linlin, ZHU Chunling. IDDES simulations of flow separation around the iced airfoil and its modal analysis[J]. ACTA AERODYNAMICA SINICA, 2023, 41(11): 46-55. DOI: 10.7638/kqdlxxb-2022.0140
    [2]HUANG Ranran, LI Dong, LIU Teng, DING Yuliang. The effect of ice accretion roughness on airfoil stall characteristics[J]. ACTA AERODYNAMICA SINICA, 2021, 39(1): 59-65. DOI: 10.7638/kqdlxxb-2019.0046
    [3]LI Jin, JIANG Ding-wu, MAO Mei-liang, DENG Xiao-gang. Research on the application of BGK-NS method to complex flows[J]. ACTA AERODYNAMICA SINICA, 2013, 31(4): 449-453.
    [4]吴寿荣. 平面定常跨声速等熵流动的分析[J]. ACTA AERODYNAMICA SINICA, 2012, 30(6): 699-703.
    [5]WANG Lin, LUO Zhenbing, XIA Zhixun, LIU Bing. Numerical simulation of separated flow control on an airfoil using dual synthetic jets[J]. ACTA AERODYNAMICA SINICA, 2012, 30(3): 353-357.
    [6]ZHOU Li-sheng, MING Xiao, BAI Ya-lei. Wing stall control by flow deflector[J]. ACTA AERODYNAMICA SINICA, 2011, 29(1): 16-21.
    [7]Parallel computation of complex flow field[J]. ACTA AERODYNAMICA SINICA, 2001, 19(3): 271-276.
    [8]ZHANG Hong-jie, MA Hui-yang, TONG Bing-gang. Turbulence modeling validation in hypersonic complex flows[J]. ACTA AERODYNAMICA SINICA, 2001, 19(2): 210-216.
    [9]Force and Flow Structure of an Airfoil Performing Some[J]. ACTA AERODYNAMICA SINICA, 2000, 18(z1).
    [10]Active Control of Dynamic-Stall Type Unsteady and Separated Flow[J]. ACTA AERODYNAMICA SINICA, 1999, 17(1): 1-7.
  • Cited by

    Periodical cited type(10)

    1. 吴雪飞,刘勇,邹宇,胡佳伟. 基于DMD方法的结冰对翼型绕流流场低阶模态的影响研究. 郑州航空工业管理学院学报. 2025(01): 26-33 .
    2. 潘永琛,陈明杲,柳润东,李志强,伍向阳. 凹腔边界对受电弓区域流动结构和气动噪声特性的影响分析. 中国铁路. 2025(05): 47-54 .
    3. 陈勇,孔维梁,刘洪. 飞机过冷大水滴结冰气象条件运行设计挑战. 航空学报. 2023(01): 7-21 .
    4. 赵宾宾,张恒,李杰. 翼型结冰状态复杂分离流动数值模拟综述. 航空学报. 2023(01): 22-40 .
    5. 伍强,徐浩军,裴彬彬,魏扬,曲青阳. 结冰飞机数值虚拟飞行研究现状与展望. 飞行力学. 2023(04): 1-9 .
    6. 杜孟华,田琳琳,朱春玲. 带冰翼型失速分离流动数值模拟和模态分析. 空气动力学学报. 2023(11): 46-55 . 本站查看
    7. 陈浩,袁先旭,毕林,华如豪,司芳芳,唐志共,傅亚陆. 不同迎角下脊形前体绕流数值模拟研究. 空气动力学学报. 2021(02): 53-61 . 本站查看
    8. 谭雪,张辰,徐文浩,王福新,文敏华. 近失速形态下冰脊分离非定常流的IDDES和模态分析. 上海交通大学学报. 2021(11): 1333-1342 .
    9. 田增冬. 基于分区大涡模拟方法的双角冰翼型气动特性分析. 电子测试. 2020(05): 70-71 .
    10. 李焱鑫,顾新. 民机SLD结冰研究和适航验证的发展与挑战. 中国民航大学学报. 2020(04): 48-53 .

    Other cited types(6)

Catalog

    Article views (242) PDF downloads (1366) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return