Citation: | MA Xiaole, CAO Wei. Discontinuous Galerkin method with quadrature-free formulation[J]. ACTA AERODYNAMICA SINICA, 2018, 36(4): 596-604. DOI: 10.7638/kqdlxxb-2016.0065 |
[1] |
Reed W H, Hill T R. Triangularmesh methodsfor the neutrontransportequation[R]. Los Alamos Report LA-UR-73-479, 1973.
|
[2] |
Lesaint P, Raviart P A. On a finite element method for solving the neutron transport equation[J]. Mathematical Aspects of Finite Elements in Partial Differential Equations, 1974(33):89-123. doi: 10.3168-jds.2010-3386/
|
[3] |
Wellford L C, Oden J T. A theory of discontinuous finite element galerkin approximations of shock waves in nonlinear elastic solids part 1:Variational theory[J]. Computer Methods in Applied Mechanics and Engineering, 1976, 8(1):1-16. doi: 10.1016/0045-7825(76)90049-9
|
[4] |
Delfour M C, Trochu F. Discontinuous finite element methods for the approximation of optimal control problems governed by hereditary differential systems[M]//Springer Berlin Heidelberg, 1978: 256-271.
|
[5] |
Chavent G, Salzano G. A finite-element method for the 1-D water flooding problem with gravity[J]. Journal of Computational Physics, 1982, 45(3):307-344. doi: 10.1016/0021-9991(82)90107-3
|
[6] |
Chavent G, Cockburn B. The local projection discontinuous-Galerkin finite element method for scalar conservation laws[J]. RAIRO-Modélisation Mathématique et Analyse Numérique, 1989, 23(4):565-592. http://www.jstor.org/stable/2008474
|
[7] |
Shu C W. Total-variation-diminishing time discretizations[J]. SIAM Journal on Scientific and Statistical Computing, 1988, 9(6):1073-1084. doi: 10.1137/0909073
|
[8] |
Shu C W. TVB uniformly high-order schemes for conservation laws[J]. Mathematics of Computation, 1987, 49(179):105-121. doi: 10.1090/S0025-5718-1987-0890256-5
|
[9] |
Cockburn B, Shu C W. The Runge-Kutta local projection discontinuous-Galerkin finite element method for scalar conservation laws[J]. RAIRO-Modélisation Mathématique et Analyse Numérique, 1991, 25(3):337-361.
|
[10] |
Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. Ⅱ. General framework[J]. Mathematics of Computation, 1989, 52(186):411-435. http://www.jstor.org/stable/2008474
|
[11] |
Cockburn B, Lin S Y, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ:one-dimensional systems[J]. Journal of Computational Physics, 1989, 84(1):90-113. doi: 10.1016/0021-9991(89)90183-6
|
[12] |
Cockburn B, Hou S, Shu C W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. Ⅳ. The multidimensional case[J]. Mathematics of Computation, 1990, 54(190):545-581. http://www.jstor.org/stable/2008501
|
[13] |
Cockburn B, Shu C W. The Runge-Kutta discontinuous Galerkin method for conservation laws Ⅴ:multidimensional systems[J]. Journal of Computational Physics, 1998, 141(2):199-224. doi: 10.1006/jcph.1998.5892
|
[14] |
郭永恒, 杨永, 张强.一种高效的隐式间断Galerkin方法研究[J].空气动力学学报, 2012, 30(2):250-253. doi: 10.3969/j.issn.0258-1825.2012.02.021
Guo Y H, Yang Y, Zhang Q, A high efficient implicit discontinuous Galerkin method[J]. Acta Aerodynamica Sinica, 2012, 30(2):250-253. (in Chinese) doi: 10.3969/j.issn.0258-1825.2012.02.021
|
[15] |
夏轶栋, 伍贻兆, 吕宏强, 等.高阶间断有限元法的并行计算研究[J].空气动力学学报, 2011, 29(05):537-541. doi: 10.3969/j.issn.0258-1825.2011.05.001
Xia Y D, Wu Y Z, Lv H Q, et al, Parallel computation of a high-order discontinuous Galerkin method on unstructured grids[J]. Acta Aerodynamica Sinica, 2011, 29(05):537-541. (in Chinese) doi: 10.3969/j.issn.0258-1825.2011.05.001
|
[16] |
Atkins H L, Shu C W. Quadrature-free implementation of discontinuous Galerkin method for hyperbolic equations[J]. AIAA Journal, 1996, 36(5):775-782. http://dl.acm.org/citation.cfm?id=870130
|
[17] |
Atkins H L. Continued development of the discontinuous Galerkin method for computational aeroacoustic applications[M]. American Institute of Aeronautics and Astronautics, 1997.
|
[18] |
Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems[J]. Journal of Scientific Computing, 2001, 16(3):173-261. doi: 10.1023/A:1012873910884
|
[19] |
Hesthaven J S, Gottlieb S, Gottlieb D. Spectral methods for time-dependent problems-[M]. Cambridge University Press, 2007.
|
[20] |
赵廷刚, 张建宏. Jacobi正交多项式的一些性质[J].甘肃高师学报, 2009, 14(5):1-3. http://d.old.wanfangdata.com.cn/Periodical/gsgsxb200905001
Zhao T G, Zhang J H, Some properties of Jacobi orthogonal polynomials[J]. Journal of Gansu Normal Colleges, 2009, 14(5):1-3. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gsgsxb200905001
|
[21] |
安静. Jacobi多项式及其导数零点的求解方法及算法实现[J].贵州师范大学学报:自然科学版, 2014, 32(4):42-45. http://d.old.wanfangdata.com.cn/Periodical/gzsfdxxb-zr201404008
AN J. The solving method and algorithm implementation of the zeros of derivative of Jacobi polynomial[J]. Journal of Guizhou Normal University, 2014, 32(4):42-45. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzsfdxxb-zr201404008
|
[22] |
Gordon W J, Hall C A. Construction of curvilinear co-ordinate systems and applications to mesh generation[J]. International Journal for Numerical Methods in Engineering, 1973, 7(4):461-477. doi: 10.1002/(ISSN)1097-0207
|
[23] |
LeVeque R J. Finite volume methods for hyperbolic problems[M]. Cambridge university press, 2002.
|
[24] |
Tu S, Aliabadi S. A slope limiting procedure in discontinuous Galerkin finite element method for gasdynamics applications[J]. International Journal of Numerical Analysis and Modeling, 2005, 2(2):163-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000135557
|
[25] |
郭永恒, 杨永, 刘逸鸥.一种基于间断Galerkin格式的新型限制器设计[J].空气动力学学报, 2014, 32(4):462-467. doi: 10.7638/kqdlxxb-2012.0157
Guo Y H, Yang Y, Liu Y O. An original designed limiter for discontinuous Galerkin method[J]. Acta Aerodynamica Sinica, 2014, 32(4):462-467. (in Chinese) doi: 10.7638/kqdlxxb-2012.0157
|