MA Xiaole, CAO Wei. Discontinuous Galerkin method with quadrature-free formulation[J]. ACTA AERODYNAMICA SINICA, 2018, 36(4): 596-604. DOI: 10.7638/kqdlxxb-2016.0065
Citation: MA Xiaole, CAO Wei. Discontinuous Galerkin method with quadrature-free formulation[J]. ACTA AERODYNAMICA SINICA, 2018, 36(4): 596-604. DOI: 10.7638/kqdlxxb-2016.0065

Discontinuous Galerkin method with quadrature-free formulation

More Information
  • Received Date: April 20, 2016
  • Revised Date: August 20, 2016
  • Available Online: January 07, 2021
  • In the calculation process of using discontinuous Galerkin finite element method, the corresponding integral expression needs to be constructed as the starting point of numerical solving method, then the volume integral and surface integral are introduced. Under normal circumstances, the value of these integral items is acquired by using numerical integration method. When high-order discontinuous Galerkin finite element method needs to be used, the demand for numerical integration calculation accuracy increases accordingly. This demand results in large calculation amount, and the numerical integration calculation amount largely determines the computational efficiency of discontinuous Galerkin finite element method. In order to solve this problem, an explicit semi-discretization of quadrature-free discontinuous Galerkin finite element method was structured by establishing the relationship between Lagrange interpolation polynomial basis function and Jacobi orthogonal polynomial basis function. An explicit semi-discretization was applied to the direct numerical simulation of linear and nonlinear one-dimensional, two-dimensional conservation laws with different condition, and ideal numerical results were obtained. Using this method, there's no need to calculate the integral items of each element by numerical integration, and the high precision of discontinuous Galerkin finite element method can be achieved effectively. The method has very significant meaning for structuring high efficient high-order discontinuous Galerkin finite element method.
  • [1]
    Reed W H, Hill T R. Triangularmesh methodsfor the neutrontransportequation[R]. Los Alamos Report LA-UR-73-479, 1973.
    [2]
    Lesaint P, Raviart P A. On a finite element method for solving the neutron transport equation[J]. Mathematical Aspects of Finite Elements in Partial Differential Equations, 1974(33):89-123. doi: 10.3168-jds.2010-3386/
    [3]
    Wellford L C, Oden J T. A theory of discontinuous finite element galerkin approximations of shock waves in nonlinear elastic solids part 1:Variational theory[J]. Computer Methods in Applied Mechanics and Engineering, 1976, 8(1):1-16. doi: 10.1016/0045-7825(76)90049-9
    [4]
    Delfour M C, Trochu F. Discontinuous finite element methods for the approximation of optimal control problems governed by hereditary differential systems[M]//Springer Berlin Heidelberg, 1978: 256-271.
    [5]
    Chavent G, Salzano G. A finite-element method for the 1-D water flooding problem with gravity[J]. Journal of Computational Physics, 1982, 45(3):307-344. doi: 10.1016/0021-9991(82)90107-3
    [6]
    Chavent G, Cockburn B. The local projection discontinuous-Galerkin finite element method for scalar conservation laws[J]. RAIRO-Modélisation Mathématique et Analyse Numérique, 1989, 23(4):565-592. http://www.jstor.org/stable/2008474
    [7]
    Shu C W. Total-variation-diminishing time discretizations[J]. SIAM Journal on Scientific and Statistical Computing, 1988, 9(6):1073-1084. doi: 10.1137/0909073
    [8]
    Shu C W. TVB uniformly high-order schemes for conservation laws[J]. Mathematics of Computation, 1987, 49(179):105-121. doi: 10.1090/S0025-5718-1987-0890256-5
    [9]
    Cockburn B, Shu C W. The Runge-Kutta local projection discontinuous-Galerkin finite element method for scalar conservation laws[J]. RAIRO-Modélisation Mathématique et Analyse Numérique, 1991, 25(3):337-361.
    [10]
    Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. Ⅱ. General framework[J]. Mathematics of Computation, 1989, 52(186):411-435. http://www.jstor.org/stable/2008474
    [11]
    Cockburn B, Lin S Y, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ:one-dimensional systems[J]. Journal of Computational Physics, 1989, 84(1):90-113. doi: 10.1016/0021-9991(89)90183-6
    [12]
    Cockburn B, Hou S, Shu C W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. Ⅳ. The multidimensional case[J]. Mathematics of Computation, 1990, 54(190):545-581. http://www.jstor.org/stable/2008501
    [13]
    Cockburn B, Shu C W. The Runge-Kutta discontinuous Galerkin method for conservation laws Ⅴ:multidimensional systems[J]. Journal of Computational Physics, 1998, 141(2):199-224. doi: 10.1006/jcph.1998.5892
    [14]
    郭永恒, 杨永, 张强.一种高效的隐式间断Galerkin方法研究[J].空气动力学学报, 2012, 30(2):250-253. doi: 10.3969/j.issn.0258-1825.2012.02.021

    Guo Y H, Yang Y, Zhang Q, A high efficient implicit discontinuous Galerkin method[J]. Acta Aerodynamica Sinica, 2012, 30(2):250-253. (in Chinese) doi: 10.3969/j.issn.0258-1825.2012.02.021
    [15]
    夏轶栋, 伍贻兆, 吕宏强, 等.高阶间断有限元法的并行计算研究[J].空气动力学学报, 2011, 29(05):537-541. doi: 10.3969/j.issn.0258-1825.2011.05.001

    Xia Y D, Wu Y Z, Lv H Q, et al, Parallel computation of a high-order discontinuous Galerkin method on unstructured grids[J]. Acta Aerodynamica Sinica, 2011, 29(05):537-541. (in Chinese) doi: 10.3969/j.issn.0258-1825.2011.05.001
    [16]
    Atkins H L, Shu C W. Quadrature-free implementation of discontinuous Galerkin method for hyperbolic equations[J]. AIAA Journal, 1996, 36(5):775-782. http://dl.acm.org/citation.cfm?id=870130
    [17]
    Atkins H L. Continued development of the discontinuous Galerkin method for computational aeroacoustic applications[M]. American Institute of Aeronautics and Astronautics, 1997.
    [18]
    Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems[J]. Journal of Scientific Computing, 2001, 16(3):173-261. doi: 10.1023/A:1012873910884
    [19]
    Hesthaven J S, Gottlieb S, Gottlieb D. Spectral methods for time-dependent problems-[M]. Cambridge University Press, 2007.
    [20]
    赵廷刚, 张建宏. Jacobi正交多项式的一些性质[J].甘肃高师学报, 2009, 14(5):1-3. http://d.old.wanfangdata.com.cn/Periodical/gsgsxb200905001

    Zhao T G, Zhang J H, Some properties of Jacobi orthogonal polynomials[J]. Journal of Gansu Normal Colleges, 2009, 14(5):1-3. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gsgsxb200905001
    [21]
    安静. Jacobi多项式及其导数零点的求解方法及算法实现[J].贵州师范大学学报:自然科学版, 2014, 32(4):42-45. http://d.old.wanfangdata.com.cn/Periodical/gzsfdxxb-zr201404008

    AN J. The solving method and algorithm implementation of the zeros of derivative of Jacobi polynomial[J]. Journal of Guizhou Normal University, 2014, 32(4):42-45. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzsfdxxb-zr201404008
    [22]
    Gordon W J, Hall C A. Construction of curvilinear co-ordinate systems and applications to mesh generation[J]. International Journal for Numerical Methods in Engineering, 1973, 7(4):461-477. doi: 10.1002/(ISSN)1097-0207
    [23]
    LeVeque R J. Finite volume methods for hyperbolic problems[M]. Cambridge university press, 2002.
    [24]
    Tu S, Aliabadi S. A slope limiting procedure in discontinuous Galerkin finite element method for gasdynamics applications[J]. International Journal of Numerical Analysis and Modeling, 2005, 2(2):163-178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000135557
    [25]
    郭永恒, 杨永, 刘逸鸥.一种基于间断Galerkin格式的新型限制器设计[J].空气动力学学报, 2014, 32(4):462-467. doi: 10.7638/kqdlxxb-2012.0157

    Guo Y H, Yang Y, Liu Y O. An original designed limiter for discontinuous Galerkin method[J]. Acta Aerodynamica Sinica, 2014, 32(4):462-467. (in Chinese) doi: 10.7638/kqdlxxb-2012.0157

Catalog

    Article views (249) PDF downloads (367) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return