FANG Ming, SUN Jianhong, WANG Conglei, YU Yuanyuan, Zhang Yantai. Analysis of wake flow characteristics for low subsonic rocket sled[J]. ACTA AERODYNAMICA SINICA, 2017, 35(6): 897-901. DOI: 10.7638/kqdlxxb-2017.0132
Citation: FANG Ming, SUN Jianhong, WANG Conglei, YU Yuanyuan, Zhang Yantai. Analysis of wake flow characteristics for low subsonic rocket sled[J]. ACTA AERODYNAMICA SINICA, 2017, 35(6): 897-901. DOI: 10.7638/kqdlxxb-2017.0132

Analysis of wake flow characteristics for low subsonic rocket sled

More Information
  • Received Date: August 13, 2017
  • Revised Date: September 15, 2017
  • Available Online: January 07, 2021
  • The three-dimensional (3D) flow field around a rocket sled system in low subsonic testing velocities was simulated through 3D incompressible Navier-Stokes equations and the Realizable k-ε turbulence model. The wake flow characteristics of the rocket sled with and without the extension plate were obtained at different free stream velocities. Moreover, the difference of the wake flow fields were compared and analyzed between the rocket sled and the aircraft. Results show that the dynamic drag is about 4.8%~8.6% of the total weight of the rocket sled system corresponding to a drag coefficient about 0.65 for the free stream velocities in the range of 60 m/s to 90 m/s. The aerodynamic lift force, which is negative, is merely 0.84%~1.9% of the total weight, and the lift coefficient is just -0.005, suggesting that the effect of the aerodynamic lift can be omitted in the kinetic analysis of this rocket sled system. The dimensionless velocity difference in the detection location is less than 8%, and the dimensionless pressure difference is less than 0.5%. These differences indicate that the influence of the velocity on the wake flow field can be neglected. In addition, the wake flow fields are similar according to the comparison of the wake field between the rocket sled system and the aircraft. This similarity satisfies the requirement of the experimental test.
  • [1]
    Meacham M B, Gallon J C, Johnson M R, et al. Rocket sled strength testing of large, supersonic parachutes[C]//23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Florida, USA, 2015.
    [2]
    Gurol H, Ketchen D, Holland L, et al. Status of the Holloman high speed maglev test track(HHSMTT)[C]//30th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Georgia, USA, 2014.
    [3]
    Coatta D, Jurewicz D, Tuee B, et al. Development and testing of an 8 meter isotensoid supersonic inflation aerodynamic decelerator[C]//22nd AIAA Aerodynamic Decelerator Systems(ADS) Conference. Florida, USA, 2013.
    [4]
    Meacham M B, Kennett A, Townsend D J, et al. Rocket sled propelled testing of a supersonic inflatable aerodynamic decelerator[C]//22nd AIAA Aerodynamic Decelerator Systems (ADS) Conference. Florida, USA, 2013.
    [5]
    邹伟红. 火箭滑橇空气动力的数值模拟[D]. 南京: 南京理工大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10288-2008157373.htm
    [6]
    Xu C Y, Ran Q, Sun J H. Hybrid scheme for compressible turbulent flow around curved surface body[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2011, 28(4):315-323.
    [7]
    许常悦, 王从磊, 孙建红.圆柱跨声速绕流中的激波/湍流相互作用大涡模拟研究[J].空气动力学学报, 2012, 30(1):22-27. http://www.kqdlxxb.com/CN/abstract/abstract10841.shtml
    [8]
    Xu C Y, Zhou T, Wang C L, et al. Applications of scale-adaptive simulation technique based on one-equation turbulence model[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(1):121-130. doi: 10.1007/s10483-015-1898-9
    [9]
    Lofthouse A J, Hughson M C, Palazotto A N. Computational aerodynamic analysis of the flow field about a hypervelocity test sled[C]//41st Aerospace Sciences Meeting and Exhibit. Nevada, USA, 2003.
    [10]
    Turnbull D, Hooser C, Hooser M, et al. Soft sled test capability at the holloman high speed test track[M]. US Air Force T & E Days, 2010.
    [11]
    Zhang J H, Jiang S S. Rigid-Flexible coupling model and dynamic analysis of rocket sled[J]. Advanced Materials Research, 2012, 346:447-454.
    [12]
    Zhang J H. Dynamic coupling analysis of rocket propelled sled using multibody-finite element method[J]. Computer Modelling & New Technologies, 2014, 18(4):25-30.
    [13]
    张立乾, 邓宗才, 陈向东, 等.超声速单轨火箭滑橇气动特性数值模拟[J].弹道学报, 2011, 23(4):100-104. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ddxb201104020&dbname=CJFD&dbcode=CJFQ
    [14]
    肖虹, 高超, 孙良.钝头体火箭橇试验地面效应影响的数值模拟[J].弹箭与制导学报, 2011, 31(4):102-104. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=djzd201104029&dbname=CJFD&dbcode=CJFQ
    [15]
    Korkischko I, Romano M J. Experimental investigation and numerical simulation of the flow around an automotive model:ahmed body[C]//19th International Congress of Mechanical Engineering. Brasilia, Brazil, 2007.
    [16]
    Han T. Computational analysis of three-dimensional turbulent flow around a bluff body in ground proximity[J]. AIAA Journal, 1989, 27(9):1213-1219. doi: 10.2514/3.10248
  • Cited by

    Periodical cited type(7)

    1. 景建斌,吕水燕,庞超,郝芬芬. 高超声速地面试验系统头部气动滚转增稳构型研究. 西北工业大学学报. 2025(01): 40-48 .
    2. 王文杰,马鑫雨,赵旭,李濠君,向粤,杨龙. 基于无翼载荷的火箭橇多场耦合特性分析. 兵工学报. 2025(04): 384-396 .
    3. 王瑞,彭仁松. 基于正交试验法的地铁空调送风风道结构优化. 机车车辆工艺. 2023(05): 42-45+48 .
    4. 王文杰,赵旭,杨龙,李濠君,向粤. 跨速域强地效水平助推滑跑气动机理. 航空学报. 2023(21): 225-235+3 .
    5. 孙建红,孙智,王从磊,余元元,侯斌,房明. 阻力伞附加质量与阻力系数修正方法. 南京航空航天大学学报. 2021(02): 167-176 .
    6. 夏有财,孙其会,肖军,耿强,徐进欣,马骏. 火箭橇运动计算算法优化与试验验证. 航空动力学报. 2021(07): 1564-1568 .
    7. 杨依峰,周人歌,吴乔,张衷之,陈浩. 单轨火箭橇跨声速试验复杂流动研究. 工程技术研究. 2021(11): 11-13 .

    Other cited types(4)

Catalog

    Article views (252) PDF downloads (156) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return