MA Shuai, WANG Jiantao, QIU Ming, LIU Gang. Unsteady numerical simulation verification of slipstream effect on turboprop[J]. ACTA AERODYNAMICA SINICA, 2019, 37(5): 804-812. DOI: 10.7638/kqdlxxb-2017.0146
Citation: MA Shuai, WANG Jiantao, QIU Ming, LIU Gang. Unsteady numerical simulation verification of slipstream effect on turboprop[J]. ACTA AERODYNAMICA SINICA, 2019, 37(5): 804-812. DOI: 10.7638/kqdlxxb-2017.0146

Unsteady numerical simulation verification of slipstream effect on turboprop

More Information
  • Received Date: August 16, 2018
  • Revised Date: December 19, 2018
  • Available Online: January 07, 2021
  • Unsteady compressible Reynolds-averaged Navier-Stokes equations in absolute coordinate system are solved to simulate the flow field which is affected by propeller slipstream in turbopro airplane takeoff states. A moving overlap grids technology is used to depict the relative motion of propeller blades. In order to guarantee the time precision and enhance computing efficiency, a fully implicit dual-time stepping method and multigrid scheme are used in parallel environment. The aerodynamic performance of airplane with propeller slipstream from numerical calculation agrees well with the experimental data. The results show that, the dynamic pressure of the flaps in the slipstream region is obviously increased, at the same time, because the slipstream blows away the accumulated boundary layer on the flaps, the slipstream delays the separation of the airflow on the flaps. These two factors mentioned above significantly improve the efficiency of the flaps, in addition, through the guide function of the flaps, the wash of the slipstream flow on the flaps is not as obvious as that on the wings. The acceleration effect boundary of the slipstream is acquired by local dynamic pressure increments and the wash effect boundary of the slipstream is gotten by local airflow angle increments. With this method, the non-linear phenomenon of the stability of the propeller aircraft, due to the interference effect of slipstream on air-craft components, can be well captured and explained. Also, the slipstream's wake convection and evolution can be revealed by the method. The present work provides certain reference for both propeller aircraft design and slipstream effect research.
  • [1]
    鄂秦, 杨国伟, 李凤蔚, 等.螺旋桨滑流对飞机气动特性影响的数值分析[J].西北工业大学学报, 1997, 15(4):511-516. E Q, http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700578950

    E Q, YANG G W, LI F W, et al. On coupling effect of two vortex systems of Chinese aircraft with turbo-propellers[J]. Journal of Northwestern Polytechnical University, 1997, 15(4):511-516. (in Chinses http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700578950
    [2]
    《航空工业科技词典》编辑委员会.航空工业科技词典[M].北京:国防工业出版社, 1982:1-83.

    Editorial Committee of Aviation Industry Science & Technology Dic-tionary. Aviation industry science & technology dictionary[M]. Beijing:National Defence Industry Press, 1982:1-83. (in Chinese)
    [3]
    刘沛清.空气螺旋桨理论及其应用[M].北京:北京航空航天大学出版社, 2006.
    [4]
    STRASH D J, LEDNICER D A, ROUBIN T D. Analysis of propeller induced aerodynamic effects[R]. AIAA-98-2414, 1998.
    [5]
    SULLIVAN J P. The effect of blade sweep on propeller perfromance[R]. AIAA-77-716, 1977.
    [6]
    陈泽民, 潘杰元.一种计算螺旋桨性能的高效升力线方法[J].航空动力学报, 1991, 6(4):295-299.

    CHEN Z M, PAN J Y. Efficient lifting line method for computing performance of propeller[J]. Journal of Aerospace Power, 1991, 6(4):295-299. (in Chinese)
    [7]
    左岁寒, 杨永.螺旋桨滑流对带后缘襟翼机翼气动特性影响的数值分析[J].航空计算技术, 2007, 37(1):54-57. doi: 10.3969/j.issn.1671-654X.2007.01.016

    ZUO S H, YANG Y. Numerical simulation of propeller/high-lift system interaction[J]. Aeronautical Computing Technique, 2007, 37(1):54-57. (in Chinese) doi: 10.3969/j.issn.1671-654X.2007.01.016
    [8]
    李博, 梁德旺, 黄国平.基于等效盘模型的滑流对涡桨飞机气动性能的影响[J].航空学报, 2008, 29(4):845-852. doi: 10.3321/j.issn:1000-6893.2008.04.013

    LI B, LIANG D W, HUANG G P. Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):845-852. (in Chinese) doi: 10.3321/j.issn:1000-6893.2008.04.013
    [9]
    许和勇, 叶正寅.螺旋桨非定常滑流数值模拟[J].航空动力学报, 2011, 26(1):148-153. http://d.old.wanfangdata.com.cn/Periodical/hkxb201107004

    XU H Y, YE Z Y. Numerical simulation of unsteady propeller slipstream[J]. Journal of Aerospace Power, 2011, 26(1):148-153. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201107004
    [10]
    杨小川, 王运涛, 王光学, 等.螺旋桨非定常滑流的高效数值模拟研究[J].空气动力学学报, 2014, 32(3):289-294. http://kqdlxxb.cars.org.cn/CN/abstract/abstract11487.shtml

    YANG X C, WANG Y T, WANG G X, et al. Numerical simulation of unsteady propeller slipstream[J]. Acta Aerodynamica Sinica, 2014, 32(3):289-294. (in Chinese) http://kqdlxxb.cars.org.cn/CN/abstract/abstract11487.shtml
    [11]
    ERICW M ROOSENBOOM, ARNE STURMER. Advanced experimental and numerical validation and analysis of propeller slipstream flows[J]. Journal of Aircraft, 2010, 47(1):284-291. doi: 10.2514/1.45961
    [12]
    许建华, 宋文萍, 韩忠华, 等.基于CFD技术的螺旋桨气动特性研究[J].航空动力学报, 2010, 25(5):1103-1109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201005021

    XU J H, SONG W P, HAN Z H, et al. Aerodynamic performance research of propellers based on CFD technology[J]. Journal of Aerospace Power, 2010, 47(1):284-291. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201005021
    [13]
    MENTER F. Zonal two equation turbulence models for aerodynamic flows[R]. AIAA-93-2906, 1993.
    [14]
    HELLSTEN A. Some improvements in menter's k-ω SST turbulence model[R]. AIAA-98-2554, 1998.
    [15]
    GAITONDE A L. A dual-time method for the solution of the unsteady euler equation[J]. Aeronautical Journal, 1994. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=96f9de4e60357d8a44c9fc2682f6145c
    [16]
    牟斌.流动控制数值模拟研究[D].绵阳: 中国空气动力研究与发展中心, 2006, 3. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1015891

    MOU B. Numerical simulation and investigation of flow control[D]. Mianyang: China Aerodynamics Research and Development Center, 2006, 3. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1015891
    [17]
    肖中云.旋翼流场数值模拟方法研究[D].绵阳: 中国空气动力研究与发展中心, 2007. http://cdmd.cnki.com.cn/Article/CDMD-90113-2007189440.htm

    XIAO Z Y. Investigation of computational modeling techniques for rotor flowfields[D]. Mianyang: China Aerodynamics Research and Development Center, 2007. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-90113-2007189440.htm
    [18]
    陈作斌, 周铸, 牟斌.多重网格技术研究及其应用[C]//第四届海峡两岸航空航天学术研讨会论文集, 2004.

    CHEN Z B, ZHOU Z, MOU B. The research and application of multigrid techniques[C]//Fourth Symposium on Cross-Strait Aerospace, 2004. (in Chinese)
    [19]
    LYLE D DAILEY, RICHARD H PLETCHER. Evaluation of multigrid acceleration for preconditioned time-accurate Navier-Stokes algorithms[R]. AIAA-95-1668, 1995.
    [20]
    STEGER J L, DOUGHERTY F C. Chimera grid scheme, american society of mechanical engineers[J]. Fluids Engineering Division, 1983, 5:59-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027365079
    [21]
    HARIHARAN N, SANKAR L N. Unsteady overset simulation of rotor-airframe interaction[J]. Journal of Aircraft, 2003, 40(4). http://cn.bing.com/academic/profile?id=bea9ca1b4dc19b38f9ce7eb8a30e9f2a&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    周铸, 江雄.多块重叠网格技术研究及其应用[C]//十二届全国计算流体力学会议论文集, 陕西西安, 2004.

    ZHOU Z, JIANG X. Overlapping multi-block grid technology research and application[C]//Twelfth Session of the National CFD Conference Proceedings. Xi'an, 2004(in Chinese)
    [23]
    MEAKIN R L. Object X-rays for cutting holes in composite overset structured grid[R]. AIAA 2001-2537, 2001.
    [24]
    LANTERI S. Parallel solutions of compressible flow using overlapping and non-overlapping mesh partitioning strategies[J]. Parallel Computing, 1996, (22):943-968. doi: 10.1016-0167-8191(96)00036-1/
    [25]
    朱国林, 徐庆新.计算流体力学并行计算技术研究综述[J].空气动力学学报, 2002, (S1):1-6. http://kqdlxxb.cars.org.cn/CN/abstract/abstract9666.shtml

    ZHU G L, XU Q X. Review on parallel computation technique on computational fluid dynamics in CAI[J]. Acta Aerodynamica Sinica, 2002, (S1):1-6. (in Chinese) http://kqdlxxb.cars.org.cn/CN/abstract/abstract9666.shtml
    [26]
    肖中云, 江雄, 牟斌, 等.并行环境下外挂物动态分离过程的数值模拟[J].航空学报, 2010, 31(8):1509-1516. http://d.old.wanfangdata.com.cn/Periodical/hkxb201008002

    XIAO Z Y, JIANG X, MOU B, et al. Numerical simulation of dynamic process of store separation in parallel environment[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(8):1509-1516. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201008002
  • Cited by

    Periodical cited type(7)

    1. 王畅,何龙,徐栋霞,唐敏,马率,吴希明. 共轴刚性旋翼桨毂流动控制减阻研究. 航空学报. 2024(09): 73-86 .
    2. 温庆,刘冠冕,程志航,杨康智,魏猛. 螺旋桨桨叶根部断裂飞脱轨迹数值仿真. 航空发动机. 2024(04): 142-149 .
    3. 李自启,江翔,万俊明,李鹏飞. 一种基于悬停和前飞的涵道螺旋桨设计方法. 教练机. 2024(04): 55-60 .
    4. 赵光银,姜裕标,王万波,霍国,耿子海,岳廷瑞. 螺旋桨滑流对简单襟翼吹气控制的影响. 航空动力学报. 2021(03): 530-542 .
    5. 张妙婵,汪发亮. 考虑螺旋桨滑流的涡桨运输机失速速度的适航验证. 民用飞机设计与研究. 2021(02): 118-123 .
    6. 阎文成,金华,姜裕标,练真增,张晖. 滑流对飞机俯仰静稳定裕量影响及平尾优化研究. 实验流体力学. 2021(05): 75-80 .
    7. 郝立元,苑毅. 基于UAV的物联网无线通信能耗优化策略. 电子测试. 2020(21): 55-57 .

    Other cited types(1)

Catalog

    Article views (260) PDF downloads (135) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return