Citation: | WANG Linpeng, DAI Yuting, TANG Changhong. Gust response analysis for helicopter rotors coupled with fuselage in different flights[J]. ACTA AERODYNAMICA SINICA, 2018, 36(6): 1052-1060. DOI: 10.7638/kqdlxxb-2018.0036 |
[1] |
韩景龙, 陈全龙, 贠海玮.直升机的气动弹性问题[J].航空学报, 2015, 36(4):1034-1055. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201504002
Han J L, Chen Q L, Yun H W. Aeroelastic of helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1034-1055. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201504002
|
[2] |
Drees J M, Harvey K W. Helicopter gust response at high forward speed[J]. Journal of Aircraft, 1970, 7(3):225-230. doi: 10.2514/3.44150
|
[3] |
Arcidiacono P J, Alexander W T, Bergquist R R. Helicopter gust response characteristics including unsteady aerodynamic stall effects[J]. Journal of the American Helicopter Society, 1974, 19(4):34-43. doi: 10.4050/JAHS.19.34
|
[4] |
Elliott A S, Chopra I. Hingeless rotor response to random gusts in forward flight[R]. AIAA 87-0954, 1987.
|
[5] |
尹维龙, 向锦武.弹性耦合对复合材料旋翼前飞气弹响应及载荷的影响[J].航空学报, 2007, 28(3):605-609. doi: 10.3321/j.issn:1000-6893.2007.03.020
Yin W L, Xiang J W. Aeroelastic response and hub load of composite hingeless rotor in forward flight with elastic couplings[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3):605-609. (in Chinese) doi: 10.3321/j.issn:1000-6893.2007.03.020
|
[6] |
Yasue M, Vwhlow C A, Ham N D. Gust response and its al leviation for a hingeless helicopter rotor in cruising flight[C]//Proceedings of the Fourth European Rotorcraft and Powered Lift Aircraft Forum. Stresa, Italy, 1978.
|
[7] |
Azuma A, Saito s. Study of rotor gust response by means of the local momentum theory[J]. Journal of the American Helicopter Society, 1982, 27(1):58-72. doi: 10.4050-JAHS.27.58/
|
[8] |
Bir G, Chora I. Gust response of hingless rotors[C]//in Proceedings of the 41st Annual Forum of the American Helicopter Society. Ft. Worth, Tex, USA, 1985.
|
[9] |
Dong L H, Yang W D, Xia P Q. Multi-body aeroelastic stablity anasis of tilt rotor aircraft in helicopter mode[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2006, 23(3):161-167.
|
[10] |
Dong L H, Yang W D, Xia P Q. Aeroelastic stability analysis of tiltrotor aircraft inturboprop cruise mode[C]//2nd International Basic Research Conference on Rotorcraft Technology. Nanjing, China, 2005: 293-301.
|
[11] |
Yeo H, Johnson W. Prediction of rotor structural loads with comprehensive analysis[J]. Journal of the American Helicopter Society, 2008, 53(2):193-209. doi: 10.4050/JAHS.53.193
|
[12] |
Park J, Sa J, Park S, et al. Loosely coupled multibody dynamics-CFD analysis for a rotor in descending flight[J]. Aerospace Science and Technology, 2013, 29:262-276. doi: 10.1016/j.ast.2013.03.009
|
[13] |
Dai Y T, Wang L P, Yang C, et al. Dynamic gust load analysis for rotors[J]. Shock and Vibration, 2016, (3):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0520071206129287
|
[14] |
Wang L P, Dai Y T, Yang C. Gust analysis for helicopter rotors in the hover and forward flights[J]. Shock and Vibration, 2017, (3):1-20. http://cn.bing.com/academic/profile?id=a1cfce877548809946591ebae3446786&encoded=0&v=paper_preview&mkt=zh-cn
|
[15] |
Vellaichamy S, Chopra I. Aeroelastic response of helicopter with flexible fuselage modeling[C]//33rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference. Dallas, Texas, 1992.
|
[16] |
Leishman J G, Beddoes T S. A semi-empirical model for dynamic stall[J]. Journal of the American Helicopter Society, 1989, 34(3):3-17. doi: 10.4050/JAHS.34.3
|
[17] |
Moriarty P J, Hansen A C. Aero dyn theory manual[Z]. National Renewable Energy Laboratory. Salt Lake City, Utah, USA, 2005.
|
[18] |
Gaonkar G H, Peters D A. Review of dynamic inflow modeling for rotorcraft flight dynamics[J]. Vertica, 1988, 12(3):213-242. doi: 10.2514/6.1986-845
|
[19] |
Leishman J G, Crouse G L. State-space model for unsteady airfoil behavior and dynamic stall[J]. AIAA 89-1319-CP.
|
[20] |
Beddoes T S. Onset of leading edge separation effects under dynamic conditions and low mach number[C]//Proceedings of the 34th Annual Forum of the American Helicopter Society, 1978.
|
[21] |
Gupta S, Leishman J G. Dynamic stall modeling of the S809 airfoil and comparison with experiments[C]//44th AIAA Aerospace Sciences Meeting. Reno, Nevada, 2006.
|
[22] |
Leishman J G, Crouse G L. State-space model for unsteady airfoil behavior and dynamic stall[C]//30th AIAA, ASME, ASCE, AHS, and ASC, Structures, Structural Dynamics and Materials Conference. Mobile, AL, 1989: 1372-1383.
|
[23] |
Hodeges D H, Dowell E H. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[C]//Ames Research Center and U. S. Army Air Mobility R&D Laboratory. Moffett Field, Calif., NASA TN D-7818.
|
[24] |
Hong C H, Chopra I. Aeroelastic stability analysis of a composite bearingless blade[J]. Journal of the AHS, 1986, 31(4):29-35. http://www.ingentaconnect.com/content/ahs/jahs/1986/00000031/00000004/art00004
|
[25] |
Hong C H, Chopra I. Aeroelastic stability analysis of a composite blade[C]//40th Annual National Forum of the AHS. Crystal City, Virginia, 1984.
|
[26] |
Smith E C, Chopra I. Aeroelastic response loads and stability of a composite rotor in forward flight[J]. AIAA Journal, 1993, 31(7):1265-1273. doi: 10.2514/3.49066
|
[1] | WU Jiaqiang, LI Lang, LI Guoqiang, SHEN Juncheng, YU Jieru, CHEN Ruifeng. Dynamic stall characteristics of a rotor airfoil under coupled pitching-plunging motions[J]. ACTA AERODYNAMICA SINICA. DOI: 10.7638/kqdlxxb-2024.0112 |
[2] | WANG Gaozhan, XIE Changchuan, LIU Chenyu, CHENG Jie. Dynamic modeling of a hypersonic vehicle with structure, aerodynamic and propulsion coupling[J]. ACTA AERODYNAMICA SINICA, 2024, 42(10): 19-29. DOI: 10.7638/kqdlxxb-2023.0180 |
[3] | GAO Kun, GUO Tongqing, JI Zhehan, ZHOU Di, LU Zhiliang. Numerical simulations of airfoil gust response and alleviation based on split velocity method[J]. ACTA AERODYNAMICA SINICA, 2023, 41(4): 84-95. DOI: 10.7638/kqdlxxb-2022.0123 |
[4] | CAO Jiufa, SONG Quanmin, WANG Chaoqun, ZHU Weijun, KE Shitang. Unsteady characteristics of wake effect for multiple wind turbines under gust wind condition[J]. ACTA AERODYNAMICA SINICA, 2022, 40(4): 247-255. DOI: 10.7638/kqdlxxb-2021.0309 |
[5] | WANG Xinjiang, FU Zhichao, GUO Li, WANG Jizhen, LYU Jinan, LIU Ziqiang. Analysis of the influence of fuselage stiffness on flutter of twin-fuselage aircraft[J]. ACTA AERODYNAMICA SINICA, 2021, 39(2): 104-109. DOI: 10.7638/kqdlxxb-2019.0123 |
[6] | YANG Ximing, LIU Nan, GUO Chengpeng, ZHANG Ying, SUN Jian, ZHANG Ge, YU Xianpeng, YU Jin'ge, HOU Liangxue. A survey of aeroelastic wind tunnel test techonlogy of flight vehicles[J]. ACTA AERODYNAMICA SINICA, 2018, 36(6): 995-1008. DOI: 10.7638/kqdlxxb-2018.0039 |
[7] | HUI Qinglong, CAO Bochao. Efficient aeroelastic coupling computation based on proper orthogonal decomposition technique[J]. ACTA AERODYNAMICA SINICA, 2018, 36(5): 743-748. DOI: 10.7638/kqdlxxb-2017.0158 |
[8] | XUE Dong, SONG Bifeng, SONG Wenping, YANG Wenqing. Advances in coupling aeroelasticity and flight dynamics of bird inspired FMAV[J]. ACTA AERODYNAMICA SINICA, 2018, 36(1): 88-97. DOI: 10.7638/kqdlxxb-2017.0153 |
[9] | LI Liang, LI Xiaowei. Numerical simulation of gusts over multi-element airfoils and their flow control[J]. ACTA AERODYNAMICA SINICA, 2013, 31(6): 710-717. |
[10] | Research advances on a close-coupled canard wing configuration[J]. ACTA AERODYNAMICA SINICA, 2003, 21(3): 320-329. |