YE Zhengyin, MENG Xianzong, LIU Cheng, YE Liuqing. Progress and prospects on aeroelasticity of hypersonic vehicles[J]. ACTA AERODYNAMICA SINICA, 2018, 36(6): 984-994. DOI: 10.7638/kqdlxxb-2018.0060
Citation: YE Zhengyin, MENG Xianzong, LIU Cheng, YE Liuqing. Progress and prospects on aeroelasticity of hypersonic vehicles[J]. ACTA AERODYNAMICA SINICA, 2018, 36(6): 984-994. DOI: 10.7638/kqdlxxb-2018.0060

Progress and prospects on aeroelasticity of hypersonic vehicles

More Information
  • Received Date: January 22, 2018
  • Revised Date: June 04, 2018
  • Available Online: January 07, 2021
  • The aeroelasticity (especially the aerothermoelasticity) of the high-speed aircraft is raising more and more attention in recent years. First of all, this paper summarizes the recent progress of the aeroelasticity problems according to different numerical methodologies. Then, based on the problems emerging in engineering practice, the thermal aeroelastic problems of high-speed vehicles are divided into issues related to thermal aeroelasticity of the aircraft and the thermal aeroelasticity of the inner runners, and their research status and future development are discussed. Particularly, the aerothermoelasticity problems related to the engine (including the panel flutter inside the ramjet engine and the aeroelasticity of the rocket engine nozzle) are investigated in detail and the significance of this issue in future work is pointed out.
  • [1]
    张攀峰, 詹世革.从国家自然科学基金资助看高超声速流动研究的发展规划[J].航空学报, 2015, 36(1):1-6. http://d.wanfangdata.com.cn/Periodical/hkxb201501002

    Zhang P F, Zhan S G. Development of hypersonic flow research in China based on supperoted projects of NSFC[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):1-6. (in Chinese). http://d.wanfangdata.com.cn/Periodical/hkxb201501002
    [2]
    McNamara J J, Friedmann P P. Aeroelastic and aero-thermoelastic analysis in hypersonic flow:past, present, and future[J]. AIAA Journal, 2011, 49(6):1089-1122. doi: 10.2514/1.J050882
    [3]
    杨超, 许赟, 谢长川.高超声速飞行器气动弹性力学研究综述[J].航空学报, 2010, 31(1):1-11. http://d.old.wanfangdata.com.cn/Periodical/hkxb201001001

    Yang C, Xu Y, Xie C C. Review of studies on aeroelasticity of hypersonic vehicles.[J] Acta Aeronautica et Astronautica Sinica, 2010, 31(1):1-11. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201001001
    [4]
    杨超, 黄超, 吴志刚, 等.气动伺服弹性研究的进展与挑战[J].航空学报, 2015, 36(4):1011-1033. http://d.old.wanfangdata.com.cn/Periodical/hkxb201504001

    Yang C, Huang C, Wu Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1011-1033. http://d.old.wanfangdata.com.cn/Periodical/hkxb201504001
    [5]
    陈刚, 李跃明.非定常流场降阶模型及其应用研究进展与展望[J].力学进展, 2011, 41(6):686-701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201104103493

    Chen G, Li Y M. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advances in Mechanics, 2011, 41(6):686-701. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201104103493
    [6]
    Gupta K K, Choi S B, Ibrahim H. Development-fluid-dynamics-based aerothermoelastic simulation capability with application to flight vehicles[J]. Journal of Aircraft, 2015:1-9. doi: 10.2514/1.C033346
    [7]
    张章, 黄伟, 唐明章, 等.空间再入飞行器热气动弹性数值研究进展[J].航天返回与遥感, 2016, 37(1):10-21. doi: 10.3969/j.issn.1009-8518.2016.01.002

    Zhang Z, Huang W, Tang M Z, et al. A review of aerothermoelastic numerical research on space reentry vehicles[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(1):10-21. (in Chinese) doi: 10.3969/j.issn.1009-8518.2016.01.002
    [8]
    杨智春, 田玮, 谷迎松, 等.带集中非线性的机翼气动弹性问题研究进展[J].航空学报, 2016, 37(7):2013-2044. http://d.old.wanfangdata.com.cn/Periodical/hkxb201607001

    Yang Z C, Tian W, Gu Y S, et al. Advance in the study on wing aeroelasticity with concentrated nonlinearity[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2013-2044. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201607001
    [9]
    Nydick I, Friedmann P, Zhong X. Hypersonic panel flutter studies on curved panels[C]//36th Structures, Structural Dynamics and Materials Conference. 1995: 1485.
    [10]
    Selvam R P, Qu Z Q, Zheng Q. Three-dimensional nonlinear panel flutter at supersonic euler flow[R]. AIAA 2002-1485.
    [11]
    Lighthill M J. Oscillating airfoils at high Mach number[J]. Journal of Aeronautical Sciences, 1953, 20(6):402-406. doi: 10.2514/8.2657
    [12]
    Ashley H, Zartarian G. Piston theory-a new aerodynamic tool for the aeroelastician[J]. Journal of the Aeronautical Sciences, 1956, 23(12):1109-1118. doi: 10.2514/8.3740
    [13]
    张伟伟, 叶正寅.基于当地流活塞理论的气动弹性计算方法研究[J].力学学报, 2005, 37(5):632-639. doi: 10.3321/j.issn:0459-1879.2005.05.015

    Zhang W W, Ye Z Y. Numerical method of aerielasticity based on local piston theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(5):632-639. (in Chinese) doi: 10.3321/j.issn:0459-1879.2005.05.015
    [14]
    史晓鸣, 杨炳渊, 李海东, 等.基于当地流活塞理论的翼-身组合体飞行器大攻角超声速颤振分析[J].空气动力学学报, 2012, 30(5):664-667. http://www.kqdlxxb.com/CN/abstract/abstract11049.shtml

    Shi X M, Yang B Y, Li H D, et al. Supersonic flutter analysis of wing-fuselage complete vehicle of high attack angle with local piston theory based on CFD technology[J]. Acta Aerodynamica Sinica, 2012, 30(5):664-667. (in Chinese) http://www.kqdlxxb.com/CN/abstract/abstract11049.shtml
    [15]
    McNamara J J, Crowell A R, Friedmann P P, et al. Approximate modeling of unsteady aerodynamics for hypersonic aeroelasticity[J]. Journal of Aircraft, 2010, 47(6):1932-1945. doi: 10.2514/1.C000190
    [16]
    韩汉桥, 张陈安, 王发民.一种高空高超声速非定常气动力近似模型[J].力学学报, 2013, 45(5):690-698. http://www.cqvip.com/QK/91029X/201305/47268557.html

    Han H Q, Zhang C A, Wang F M. An approximate model of unsteady aerodynamics for hypersonic problems at high altitude[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5):690-698. (in Chinese) http://www.cqvip.com/QK/91029X/201305/47268557.html
    [17]
    Liu W, Zhang C A, Han H Q, et al. Local piston theory with viscous correction and its application[J]. AIAA Journal, 2017, 55(1):942-954. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=809cd48c69a90cdce3a8909268db6c37
    [18]
    Meijer M C, Dala L. Generalized formulation and review of piston theory for airfoils[J]. AIAA Journal, 2016, 54(1):1-11. doi: 10.2514/1.J054903
    [19]
    Lucia D J, Beran P S, Silva W A. Reduced-order modeling:new approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40(1):51-117. doi: 10.1016-j.paerosci.2003.12.001/
    [20]
    Skujins T, Cesnik C. Reduced-order modeling of hypersonic vehicle unsteady aerodynamics[R]. AIAA 2010-8127.
    [21]
    Omran A, Newman B. Full envelope nonlinear parameter-varying model approach for stmospheric flight dynamics[J]. Journal of Guidance, Control and Dynamics, 2012, 35(1):270-283. doi: 10.2514/1.51577
    [22]
    Chen X, Liu L, Zhou S, et al. Adding-point strategy for reduced-order hypersonic aerothermodynamics modeling based on fuzzy clustering[J]. Chinese Journal of Mechanical Engineering, 2016, 29(5):983-991. doi: 10.3901/CJME.2016.0128.016
    [23]
    窦立谦, 冀然.基于神经网络的非线性气动弹性系统辨识[J].计算机应用与软件, 2017, 34(6):236-241. doi: 10.3969/j.issn.1000-386x.2017.06.043

    Dou L Q, Ji R. Identification of nonlinear aeroelastic systems based on neural network[J]. Computer Applocation and Software, 2017, 34(6):236-241. (in Chinese) doi: 10.3969/j.issn.1000-386x.2017.06.043
    [24]
    Tang L, Chen P C, Liu D, et al. Proper orthogonal decomposition and response surface method for TPS/RLV structural design and optimization: X-34 case study[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005: 839.
    [25]
    Crowell A R, McNamara J J. Model reduction of computational aerothermodynamics for hypersonic aerothermoelasticity[J]. AIAA Journal, 2012, 50(1):74-84. doi: 10.2514/1.J051094
    [26]
    殷亮, 蒋军成, 张立翔.非一致性界面热流固耦合作用的整体求解[J].应用数学和力学, 2012, 33(2):210-220. doi: 10.3879/j.issn.1000-0887.2012.02.006

    Yin L, Jiang J C, Zhang L X. Monolithic approach to thermal fluid structure interaction with non-conforming interfaces[J]. Applied Mathematics and Mechanics, 2012, 33(2):210-220. (in Chinese) doi: 10.3879/j.issn.1000-0887.2012.02.006
    [27]
    Lin T, Zhang S H, Song H W, et al. Deformation analysis of hot stamping tools by thermal-fluid-mechanical coupled approach based on MpCCI[J]. Materials Research Innovations, 2014, 18(S4):1068-1073. doi: 10.1179/1432891714Z.000000000822
    [28]
    Chen G, Sun J, Li Y M. Adaptive reduced-order-model-based control-law design for active flutter suppression[J]. Journal of Aircraft, 2012, 49(4):973-980. doi: 10.2514/1.C031236
    [29]
    周强, 陈刚, 李跃明.基于CFD降阶的非线性气动弹性稳定性分析[J].振动与冲击, 2016, 35(16):17-23. http://d.old.wanfangdata.com.cn/Periodical/zdycj201616004

    Zhou Q, Chen G, Li Y M. Nonlinear aeroelastic stability analysis based on CFD reduced order models[J]. Journal of Vibration and Shock, 2016, 35(16):17-23. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zdycj201616004
    [30]
    彭治雨, 石义雷, 龚红明, 等.高超声速气动热预测技术及发展趋势[J].航空学报, 2015, 36(1):325-345. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501026

    Peng Z Y, Shi Y L, Gong H M, et al. Hypersonic aeroheating perdiction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):325-345. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201501026
    [31]
    Crowell A R, McNamara J J, Kecskemety K M, et al. A reduced order aerothermodynamic modeling framework for hypersonic aerothermoelasticity[R]. AIAA 2010-2969.
    [32]
    Falkiewicz N J, S Cesnik C E, Crowell A R, et al. Reduced-order aerothermoelastic framework for hypersonic vehicle control simulation[J]. AIAA Journal, 2011, 49(8):1625-1646. doi: 10.2514/1.J050802
    [33]
    Weaver A B, Alexeenko A A, Greendyke R B, et al. Flowfield uncertainty analysis for hypersonic computational fluid dynamics simulations[J]. Journal of Thermophysics and Heat Transfer, 2011, 25(1):10-20. doi: 10.2514/1.49522
    [34]
    Hosder S, Bettis B R. Uncertainty and sensitivity analysis for reentry flows with inherent and model-form uncertainties[J]. Journal of Spacecraft and Rockets, 2012, 49(2):193-206. doi: 10.2514/1.A32102
    [35]
    Bose D, Brown J L, Prabhu D K, et al. Uncertainty assessment of hypersonic aerothermodynamics prediction capability[J]. Journal of Spacecraft and Rockets, 2013, 50(1):12-18. doi: 10.2514/1.A32268
    [36]
    张子健, 刘云峰, 姜宗林.振动激发对高超声速气动力/热影响[J].力学学报, 2017, 49(3):616-626. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201703012

    Zhang Z J, Liu Y F, Jiang Z L. Effect of vibration excitation on hypersonic aerodynamic and aerothermodynamic[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3):616-626. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201703012
    [37]
    Culler A J, McNamara J J. Studies on fluid-thermal-structural coupling for aerothermoelasticity in hypersonic flow[J]. AIAA Journal, 2010, 48(8):1721-1738. doi: 10.2514/1.J050193
    [38]
    Miller B A, McNamara J J. Loosely coupled time-marching of fluid-thermal-structural interactions with time-accurate CFD[R]. AIAA 2015-0686.
    [39]
    刘磊.高超声速飞行器热气动弹性特性及相似准则研究[D].中国空气动力研究与发展中心, 2014.

    Liu L. Study on the characteristics and similatity criterida of aerothermoelasticity for hypersonic vehicle[D]. China Aerodynamics Research and Development Center, 2014. (in Chinese)
    [40]
    桂业伟, 刘磊, 耿湘人, 等.气动力/热与结构多场耦合计算策略与方法研究[J].工程热物理学报, 2015, 36(5):1047-1051. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201505026.htm

    Gui Y W, Liu L, Geng X R. Study on the computation strategy and method of aero-dynamic-thermal-structural coupling problem[J]. Journal of Engineering Thermophysics, 2015, 36(5):1047-1051. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GCRB201505026.htm
    [41]
    张华山, 张家雄, 何咏梅.高超声速飞行器舵面热颤振数值方法研究[J].导弹与航天运载技术, 2015(5):59-62. http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs201505016

    Zhang H S, Zhang J X, He Y M. A numerical method for rudder heat flutter of hypersonic vehicle[J]. Missules and Space Vehicles, 2015(5):59-62. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs201505016
    [42]
    Hua R H, Zhao C X, Ye Z Y, et al. Effect of elastic deformation on the trajectory of aerial separation[J]. Aerospace Science & Technology, 2015, 45(2):128-139. http://www.sciencedirect.com/science/article/pii/S1270963815001303
    [43]
    许斌, 梅睿, 马建敏, 等.高速柔性飞行器耦合动力学研究进展[J].飞行力学, 2016, 34(3):1-6. http://d.old.wanfangdata.com.cn/Periodical/fxlx201603001

    Xu B, Mei R, Ma J M, et al. Development in coupling dynamics of flexible high-speed aircraft[J]. Flight Dynamics, 2016, 34(3):1-6. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxlx201603001
    [44]
    华如豪, 叶正寅.吸气式高超声速飞行器多学科动力学建模[J].航空学报, 2015, 36(1):346-356. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501027

    Hua R H, Ye Z Y. Multidisciplinary dynamics modeling and analysis of a generic hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):346-356. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201501027
    [45]
    李建林, 唐乾刚, 丰志伟, 等.气动弹性影响下高超声速飞行器动力学建模与分析[J].国防科技大学学报, 2013, 35(1):7-11. doi: 10.3969/j.issn.1001-2486.2013.01.002

    Li J L, Tang Q G, Femg Z W, et al. Modelling and analysis of a hypersonic vehicle with aeroelastic effect[J]. Journal of National University of Defense Technology, 2013, 35(1):7-11. (in Chinese) doi: 10.3969/j.issn.1001-2486.2013.01.002
    [46]
    唐硕, 祝强军.吸气式高超声速飞行器动力学建模研究进展[J].力学进展, 2011, 41(2):187-200. http://www.cqvip.com/Main/Detail.aspx?id=37095563

    Tang S, Zhu Q J. Research progress on flight dynamic modleling of airbreathing hypersonic flight vehicles[J]. Advances in Mechanics, 2011, 41(2):187-200. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=37095563
    [47]
    罗金玲, 李超, 徐锦.高超声速飞行器机体/推进一体化设计的启示[J].航空学报, 2015, 36(1):39-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201501005

    Luo J L, Li C, Xu J. Inspiration of hypersonic vehicle with airframe/propulsion integrated design[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):39-48. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201501005
    [48]
    苏二龙, 罗建军, 黄兴李, 等.考虑气动加热和变截面惯性矩的高超声速飞行器建模与分析[J].宇航学报, 2012, 33(6):690-697. doi: 10.3873/j.issn.1000-1328.2012.06.002

    Su E L, Luo J J, Huang X L, et al. Modeling and analysis of hypersonic vehicle considering variable cross-section moment of inertia and aerodynamics heating[J]. Journal of Astronautics, 2012, 33(6):690-697. (in Chinese) doi: 10.3873/j.issn.1000-1328.2012.06.002
    [49]
    郭帅.高超声速飞行器关键部件的多物理场耦合研究[D].南京: 南京航空航天大学, 2016.

    Guo S. Multidisciplinary study of key components in hypersonic flight vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [50]
    苏雪.高超声速热流固多物理场计算研究[D].浙江大学, 2016.

    Su X. Numerical research on the hypersonic thermal-fluid-structure multiphysical field[D]. Zhejiang University, 2016. (in Chinese)
    [51]
    季卫栋.高超声速气动力/热/结构多场耦合问题数值模拟技术研究[D].南京: 南京航空航天大学, 2016.

    Ji W D. Numerical simulation of hypersonic fluid-thermal-structural coupled problem[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
    [52]
    肖进, 完颜振海, 杨亮, 等.面向控制的高超声速飞行器一体化建模与分析[J].计算机仿真, 2017, 34(2):92-96, 216. doi: 10.3969/j.issn.1006-9348.2017.02.021

    Xiao J, Wanyan Z H, Yang L. Control-oriented integrated modeling and analysis of hypersonic Vehicle[J]. Computer Simulation, 2017, 34(2):92-96, 216. (in Chinese) doi: 10.3969/j.issn.1006-9348.2017.02.021
    [53]
    Zhang X, Wang Y, Li F, Liu K. Static aerothermoelasticity of hypersonic vehicles[R]. AIAA 2017-2367.
    [54]
    Danowsky B P, Chrstos J R, Klyde D H, et al. Evaluation of aeroelastic uncertainty analysis methods[J]. Journal of Aircraft, 2010, 47(4):1266-1273. doi: 10.2514/1.47118
    [55]
    李国曙, 万志强, 杨超.高超声速翼面气动热与静气动弹性综合分析[J].北京航空航天大学学报, 2012, 38(1):53-58. doi: 10.3969/j.issn.1005-4561.2012.01.030

    Li G S, Wan Z Q, Yang C. Integrated analysis of aerothermal-aeroelastic wings in hyperconic flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(1):53-58. (in Chinese) doi: 10.3969/j.issn.1005-4561.2012.01.030
    [56]
    Guo H, Chen Y. Dynamic analysis of two-degree-of-freedom airfoil with freeplay and cubic nonlinearities in supersonic flow[J]. Applied Mathematics and Mechanics, 2012, 33(1):1-14. http://d.wanfangdata.com.cn/Periodical_yysxhlx-e201201001.aspx
    [57]
    Lamort N, Friedmann P P. Hypersonic aeroelastic and aerothermoelastic studies using computational fluid dynamics[J]. AIAA Journal, 2014, 52(9):2062-2078. doi: 10.2514/1.J053018
    [58]
    李晓鹏, 宋文萍, 韩忠华, 等.前缘钝化对高超声速舵面气动/热特性影响研究[J].航空计算技术, 2013, 43(2):80-84. doi: 10.3969/j.issn.1671-654X.2013.02.021

    Li X P, Song W P, Han Z H, et al. Influence of leading edge bluntness on hypersonic aerodynamic performance of control surface[J]. Aeronautical Computing Technique, 2013, 43(2):80-84. (in Chinese) doi: 10.3969/j.issn.1671-654X.2013.02.021
    [59]
    史晓鸣, 梅睿, 苏轶龙, 等.舵轴位置对全动舵面气动弹性稳定性影响[J].噪声与振动控制, 2016, 36(3):81-84. http://d.old.wanfangdata.com.cn/Periodical/zsyzdkz201603018

    Shi X M, Mei R, Su Y L. Influence of rudder shaft location on aeroelastic stability of an all-moving rudder[J]. Noise and Vibration Control, 2016, 36(3):81-84. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zsyzdkz201603018
    [60]
    杨享文, 武洁, 叶坤, 等.高超声速全动舵面的热气动弹性研究[J].力学学报, 2014, 46(4):626-630. http://d.wanfangdata.com.cn/Periodical_lxxb201404017.aspx
    [61]
    Ye K, Ye Z, Zhang Q, et al. Study on areothermoelastic for hypersonic all moving control surface[R]. International Bhurban Conference on Applied Sciences and Technology. IEEE, 2016: 467-475.
    [62]
    杨享文.高超声速全动舵面的热气动弹性研究[D].西北工业大学, 2012.

    Yang X W, Wu J, Ye K. Study on aerothermoelasticity of a hypersonic all-movable control surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 626-630. (in Chinese)
    [63]
    叶坤, 叶正寅, 屈展, 等.高超声速舵面热气动弹性不确定性及全局灵敏度分析[J].力学学报, 2016, 48(2):278-289. http://d.old.wanfangdata.com.cn/Periodical/lxxb201602003

    Ye K, Ye Z Y, Qu Z, et al. Uncertainty and global sensitivity analysis of hypersonic control surface aerothermoelastic[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2):278-289. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lxxb201602003
    [64]
    刘成, 叶正寅, 叶坤.转捩位置对全动舵面热气动弹性的影响.力学学报, 2017, 49(4):802-810. http://d.old.wanfangdata.com.cn/Periodical/lxxb201704006

    Liu C, Ye Z Y, Ye K. The effect of transiton location on aerothermoelasticity of a hypersonic all-movable centrol surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4):802-810. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lxxb201704006
    [65]
    肖艳平, 杨翊仁, 叶献辉.边界松驰对壁板颤振响应的影响分析[J].工程力学, 2012, 29(11):40-45. doi: 10.6052/j.issn.1000-4750.2011.03.0183

    Xiao Y P, Yang Y R, Ye X H. Flutter analysis of panel with boundary conditions relaxation[J]. Engineering Mechanics, 2012, 29(11):40-45. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.03.0183
    [66]
    杨智春, 高扬, 谷迎松.复合材料曲壁板颤振特性分析[J].机械科学与技术, 2013, 32(7):1069-1073. http://d.old.wanfangdata.com.cn/Periodical/jxkxyjs201307028

    Yang Z C, Gao Y, Gu Y S. Flutter characteristics analysis of composite curved shells[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(7):1069-1073. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxkxyjs201307028
    [67]
    张飞霆, 杨智春, 高扬, 等.弹性支承对三维曲壁板颤振特性的影响[J].振动与冲击, 2014, 33(18):1-6, 20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201418001

    Zhang F T, Yang Z C, Gao Y, et al. Influence of concentrated elastic support on flutter characteristic of curved panels[J]. Journal of Vibration and Shock, 2014, 33(18):1-6, 20. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201418001
    [68]
    Sun Q, Xing Y. Exact eigensolutions for flutter of symmetric cross-ply composite laminates at high supersonic speeds[J]. Composite Structures, 2018, 183(1):358-370. http://www.sciencedirect.com/science/article/pii/S0263822316329993
    [69]
    肖艳平, 杨翊仁, 叶献辉.三维粘弹壁板颤振分析[J].振动与冲击, 2011, 30(1):82-86. doi: 10.3969/j.issn.1000-3835.2011.01.017

    Xiao Y P, Yang Y R, Ye X H. Flutter analysis for a three-dimensional viscoelastic panel[J]. Journal of Vibration and Shock, 2011, 30(1):82-86. (in Chinese) doi: 10.3969/j.issn.1000-3835.2011.01.017
    [70]
    王晓庆, 韩景龙, 员海玮.偏航机动飞行时的壁板颤振问题及优化设计[J].宇航学报, 2011, 32(2):255-260. doi: 10.3873/j.issn.1000-1328.2011.02.004

    Wang X Q, Han J L, Yun H W. Problem with panel flutter and its optimization design in yaw maneuver flight[J]. Journal of Astronautics, 2011, 32(2):255-260. (in Chinese) doi: 10.3873/j.issn.1000-1328.2011.02.004
    [71]
    杨智春, 周建, 谷迎松.超音速气流中受热曲壁板的非线性颤振特性[J].力学学报, 2012, 44(1):30-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200106422

    Yang Z C, Zhou J, Gu Y S. Nonlinear thermal flutter of heated curved panels in supersonic air flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1):30-38. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200106422
    [72]
    Yang X D, Yu T J, Zhang W, et al. Damping effect on supersonic panel flutter of composite plate with viscoelastic mid-layer[J]. Composite Structures, 2015, 137:105-113.
    [73]
    周建, 杨智春, 谷迎松.两面受气动载荷的壁板热气动弹性稳定性分析[J].中国科学:技术科学, 2012, 55(12):60-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205296332

    Zhou J, Yang Z C, Gu Y S. Aeroelastic stability analysis of heated panel with aerodynamic loading on both surfaces[J]. Sci China Tech Sci, 2012, 55(12):60-66. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205296332
    [74]
    Wang X, Yang Z, Wang W, et al. Nonlinear viscoelastic heated panel flutter with aerodynamic loading exerted on both surfaces[J]. Journal of Sound and Vibration, 2017, 409:306-317. doi: 10.1016/j.jsv.2017.07.033
    [75]
    Spottswood S M, Eason T, Beberniss T. Influence of shock-boundary layer interactions on the dynamic response of a flexible panel[C]//Proceedings of the ISMA-2012, 2012: 17-19.
    [76]
    Spottswood S M, Eason T, Beberniss T. Full-field dynamic pressure and displacement measurements of a panel excited by Shcok boundary-layer interaction[R]. AIAA 2013-2016.
    [77]
    Visbal M R. On the interaction of an oblique shock with a flexible panel[J]. Journal of Fluids & Structures, 2012, 30:219-225. http://www.sciencedirect.com/science/article/pii/S0889974612000369
    [78]
    Brouwer K, Crowell A R, McNamara J J. Rapid prediction of unsteady aeroelastic loads in shock-dominated Flows[R]. AIAA 2015-0687.
    [79]
    Ostoich C, Bodony D, Geubelle P. Aeroelastic response of a panel under high speed turbulent boundary layers using direct numerical simulation[R]. AIAA 2013-1662.
    [80]
    熊宴斌.超声速主流条件发汗冷却的流动和传热机理研究[D].清华大学, 2013.

    Xiong Y B. Study of the mechanism of flow and heat transfer on supersonic transpiration cooling[D]. Tsinghua University, 2013. (in Chinese)
    [81]
    刘晨.复杂燃烧流场数值模拟方法研究[D].南京航空航天大学, 2009.

    Liu C. Numerical methods for complex combustion flowfields[D]. Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
    [82]
    Holden M. Historical review of experimental studies and prediction methods to describe laminar and turbulent shock wave/boundary layer interactions in hypersonic flows[R]. AIAA 2006-494, 2006.
    [83]
    李祥晟, 丰镇平.燃烧室内自激励振荡燃烧的数值研究[J].燃烧科学与技术, 2006, 12(1):51-54. doi: 10.3321/j.issn:1006-8740.2006.01.011

    LI X S, Feng Z P. Numerical study on self-excited oscillation combustion in a combustor[J]. Journal of Combustion Science and Technology, 2006, 12(1):51-54. (in Chinese) doi: 10.3321/j.issn:1006-8740.2006.01.011
    [84]
    吴海燕, 周进, 汪洪波, 等.不同结构超声速燃烧斜坡喷注器性能对比研究[J].航空动力学报, 2009, 24(7):1476-1481. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200907007

    Wu H Y, Zhou J, Wang H B, et al. Performance comparison between the ramp injectors with different structures in supersonic combustion[J]. Journal of Aerospace Power, 2009, 24(7):1476-1481. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200907007
    [85]
    Abdelsalam T M, Tiwari S N, Mohieldin T O. Effects of ramp swept angle in supersonic mixing[R]. AIAA 2000-2377.
    [86]
    Kwak E, Lee S. Numerical study of the effect of exit configurations on supersonic inlet buzz[R]. AIAA 2013-3025.
    [87]
    Lewis M J, Hastings D E. The influence of flow non-uniformities in air breathing hypersonic propulsion system[R]. AIAA 87-2079, 1987.
    [88]
    潘沙, 田正雨, 冯定华, 等.超燃冲压发动机唇口气动热计算研究与分析[J].航空动力学报, 2009, 24(9):2096-2100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb200909029

    Pan S, Tian Z Y, Feng D H, et al. Computation and analysis of aeroheating of scramjet inlet cowl lip[J]. Journal of Aerospace Power, 2009, 24(9):2096-2100. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb200909029
    [89]
    Blevins R D, Holehouse I, Wentz K R. Thermoacoustic loads and fatigue of hypersonic vehicle skin panels[J]. Journal of Aircraft, 1993, 30(6):971-978. doi: 10.2514/3.46441
    [90]
    Ho S Y, Paull A. Coupled thermal, structural and vibrational analysis of a hypersonic engine for flight test[J]. Aerospace Science & Technology, 2006, 10(5):420-426. http://www.sciencedirect.com/science/article/pii/S1270963806000344
    [91]
    Culler A J, Mcnamara J J. Impact of fluid-thermal-structural coupling on response prediction of hypersonic skin panels[J]. AIAA Journal, 2011, 49(11):2393-2406. doi: 10.2514/1.J050617
    [92]
    Duzel U, Eyi S. The effects of static aeroelasticity on the performance of supersonic/hypersonic nozzles[R]. AIAA 2014-2770.
    [93]
    Frauholz S, Hosters N, et al. Fluid-structure interacton in the context of a scramjet Intake[R]. AIAA 2014-2449.
    [94]
    Kline H L, Palacios F, Alonso J J. Sensitivity of the performance of a 3-Dimensional hypersonic inlet to shape deformations[R]. AIAA 2014-3228.
    [95]
    Reinert J D, Nompelis I, Candler G V. Coupled conjugate heat transfer simulation for a scramjet inlet at Mach 8[R]. AIAA 2017-4502.
    [96]
    Dai G, Zeng L, Jia H, et al. Preliminary study on the influence of aerothermoelastic deformation on 2-D hypersonic inlet performance[R]. AIAA 2017-2403.
    [97]
    王世芬, 李清泉.高超音速湍流分离表面热流率的脉动特性[J].力学学报(英文版), 1991, 23(4):426-432. http://www.cnki.com.cn/Article/CJFDTotal-LXXB199104005.htm

    Wang S F, Li Q Q. Nature of surface heat transfer fluctuation in a hypersonic separated turbulent flow[J]. Acta Mechanica Sinica, 1991, 23(4):426-432. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-LXXB199104005.htm
    [98]
    Yao C, Liu Z, Ma R, et al. Numerical vibration analysis of supersonic mixed-compression intake[C]//ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, 2013.
    [99]
    Yao C, Zhang G H, Xu F C, et al. Influence of wall vibration on the aero performance of transonic diffuser[R]. AIAA 2015-2456.
    [100]
    Tabanli H, Yuceil K B. An Experimental investigation of the effect of boundary layer on an internal compression inlet[R]. AIAA 2015-2936.
    [101]
    Tabanli H, Yuceil K B. Flow Visualization and fluctuating pressure measurements in an internal compression inlet[R]. AIAA 2015-0111.
    [102]
    叶坤, 叶正寅, 屈展.高超声速进气道气动弹性的影响研究[J].推进技术, 2016, 37(12):2270-2277. http://d.old.wanfangdata.com.cn/Periodical/tjjs201612009

    Ye K, Ye Z Y, Qu Z. Effects of panel vibration on performance of combustor for scramjet[J]. Journal of Propulsion Technology, 2017, 38(2):386-398. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tjjs201612009
    [103]
    王晓朋.超燃冲压发动机壁板振动对化学反应的影响[D].西北工业大学硕士论文, 2013.

    Wang X P. The impact of scramjet engine panel vibration on chemical reaction[D]. Northwest Polytechnical University, 2013. (in Chinese)
    [104]
    叶坤, 叶正寅, 屈展.超燃冲压发动机壁板振动对燃烧室性能的影响[J].推进技术, 2017, 38(2):386-398. http://d.old.wanfangdata.com.cn/Periodical/tjjs201702018

    Ye K, Ye Z Y, Qu Z. Effects of panel vibration on performance of combustor for scramjet[J]. Journal of Propulsion Technology, 2017, 38(2):386-398. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tjjs201702018
    [105]
    叶正寅, 吕广亮.火箭发动机喷管非定常侧向力和流固耦合研究进展[J].航空工程进展, 2015, 6(1):1-12. doi: 10.3969/j.issn.1674-8190.2015.01.001

    Ye Z Y, Lü G L. Advances in the study of unsteady side-loads and fluid/structure innteraction of rocket nozzles[J]. Advances in Aeronautical Science and Engineering, 2015, 6(1):1-12. (in Chinese) doi: 10.3969/j.issn.1674-8190.2015.01.001
    [106]
    Stark R, Génin C. Flow separation in rocket nozzles under high altitude condition[J]. Shock Waves, 2013, 18:1-6. doi: 10.1007/s00193-016-0631-6
    [107]
    Pekkari L O. Aeroelastic stability of supersonic nozzles with separated flow[R]. AIAA 1993-2588.
    [108]
    Östlund J, Damgaard T, Frey M. Side-load phenomena in highly overexpanded rocket nozzles[J]. Journal of Propulsion and Power, 2004, 20(4):695-704. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ02145819/
    [109]
    Zhao X, Bayyuk S, Zhang S. Aeroelastic response of rocket nozzles to asymmetric thrust loading[J]. Computers & Fluids, 2013, 76(10):128-148. http://www.sciencedirect.com/science/article/pii/S0045793013000467
    [110]
    Zhang S, Shotorban B, Pohly J, et al. Aeroelastic response of rocket nozzles subected to combined thrust and side loads[R]. AIAA 2015-3414.
    [111]
    吴朋朋, 杨月诚, 高双武, 等.固体火箭发动机喷管分离流动流固耦合数值仿真[J].固体火箭技术, 2012, 35(3):344-347. doi: 10.3969/j.issn.1006-2793.2012.03.012

    Wu P, Yang Y, Gao S, et al. Fluid-structure coupled numerical simulation of flow separation in SRM nozzle[J]. Journal of Solid Rocket Technology, 2012, 35(3):344-347. (in Chinese) doi: 10.3969/j.issn.1006-2793.2012.03.012
    [112]
    胡海峰, 鲍福廷, 蔡强, 等.大膨胀比火箭发动机喷管流动分离与气动弹性分析[J].固体火箭技术, 2011, 34(6):711-716. doi: 10.3969/j.issn.1006-2793.2011.06.009

    Hu H, Bao F, Cai Q, et al. Flow separation and aeroelastic coupling analysis in overexpanded rocket nozzles[J]. Journal of Solid Rocket Technology, 2011, 34(6):711-716. (in Chinese) doi: 10.3969/j.issn.1006-2793.2011.06.009
    [113]
    Lefrançois E. Fluid-structure interaction in rocket engines[J]. European Journal of Computational Mechanics, 2010, 19(5-7):637-652. doi: 10.3166/ejcm.19.637-652
    [114]
    Wang T S, Zhao X, Zhang S, et al. Development of an aeroelastic modeling capability for transient nozzle flow analysis[R]. AIAA 2013-3641.
    [115]
    Lü G L, Ye Z Y. Investigation on the mechanism of aeroelastic hazard during ground test of rocket nozzle[J]. Sci China:Tech Sci, 2012, 55(9):2462-2473.(in Chinese) doi: 10.1007/s11431-012-4939-x
  • Related Articles

    [1]ZHENG Haibo, GAO Chao, HE Chengjun, HUANG Jiangtao, SHU Bowen. Fluid-structural interaction characteristics of serpentine nozzles with different offset ratios[J]. ACTA AERODYNAMICA SINICA. DOI: 10.7638/kqdlxxb-2024.0116
    [2]CHEN Yongfu, LU Hongbo, WEN Shuai, CHEN Xing, SUN Riming. Thrust/Drag measurement techniques of a free flight scramjet in a shock tunnel[J]. ACTA AERODYNAMICA SINICA, 2022, 40(1): 141-148. DOI: 10.7638/kqdlxxb-2021.0300
    [3]ZHANG Junlong, CHANG Juntao, WANG Xuan, BAO Wen. Recent research progress on flame characteristics in strut-equipped scramjet combustor[J]. ACTA AERODYNAMICA SINICA, 2020, 38(3): 577-592. DOI: 10.7638/kqdlxxb-2019.0168
    [4]ZHAI Xiaofei, ZHANG Kouli, BAI Hanchen, LI Guozhi. Chemical nonequilibrium flow in nozzle of a supersonic combustor direct-connected test bed with shock heating[J]. ACTA AERODYNAMICA SINICA, 2020, 38(2): 268-273. DOI: 10.7638/kqdlxxb-2018.0100
    [5]WANG Xiaodong, LU Deyong. Numerical study of test medium effects based on HyShot scramjet[J]. ACTA AERODYNAMICA SINICA, 2018, 36(2): 307-314. DOI: 10.7638/kqdlxxb-2017.0017
    [6]Fu Chunguang, Zeng Hao, He Liming, Sun Chaojiao, Zhao Kun. Investigation on the influence of nozzle configuration on performance of a 2-stage PDE[J]. ACTA AERODYNAMICA SINICA, 2016, 34(6): 770-777. DOI: 10.7638/kqdlxxb-2016.0063
    [7]SHI Jingwei, WANG Zhanxue, ZHANG Xiaobo, LIU Zengwen. Study on counter-flow thrust vectoring nozzle jet attachment and control[J]. ACTA AERODYNAMICA SINICA, 2013, 31(6): 723-726. DOI: 10.7638/kqdlxxb-2012.0014
    [8]LI Bin, LI Jing-ping, YU Hong-ru, CHEN Hong. Experimental methods of exhaust nozzle in ramjet engines[J]. ACTA AERODYNAMICA SINICA, 2010, 28(6): 621-625.
    [9]LI Xiang-yu, LU Fang-yun, ZHANG Duo. The design of free-vortex aerodynamic window's nozzle[J]. ACTA AERODYNAMICA SINICA, 2006, 24(4): 461-465.
    [10]Calculation on plug nozzle flow field[J]. ACTA AERODYNAMICA SINICA, 2002, 20(4): 465-469.
  • Cited by

    Periodical cited type(14)

    1. 苑凯华,田海涛,付志超,刘凯. 空天飞行器气动弹性问题研究进展. 振动与冲击. 2025(07): 275-285 .
    2. 王泽,宋述芳,王旭,张伟伟. 数据驱动的气动热建模预测方法总结与展望. 气体物理. 2024(04): 39-55 .
    3. 余婧,韩青华,陈江涛,吴晓军,赵娇,郑小虎,刘深深. 考虑机身累积热变形的高速飞机气动布局稳健优化. 空气动力学学报. 2024(10): 98-108 . 本站查看
    4. 王谋远,苏纬仪,孙斐,崔晟,张文强,关开港. 高超声速进气道宽范围工作多场耦合效应及快速预测研究. 推进技术. 2023(02): 177-191 .
    5. 王硕,黄进安,代成浩,陈海波. 高速流场中高频振动面板的能量辐射传递模型研究. 应用力学学报. 2023(01): 57-65 .
    6. 叶柳青,叶正寅,洪正,叶坤. 振荡激波作用下受热壁板主共振特性分析. 振动与冲击. 2022(09): 41-50 .
    7. 刘小川,马君峰,白春玉,李凯翔,邹学锋,王彬文,张永杰. 航空结构动力学研究的进展与展望. 应用力学学报. 2022(03): 409-436+407 .
    8. 齐麟,杨亚,陈意芬,殷玮,赵宏宇. 结构随机细长体飞行器动力学建模与分析. 系统仿真技术. 2022(04): 240-249 .
    9. 尚逸鸣,华如豪,袁先旭,唐志共,王中伟. 考虑弹性效应的乘波体纵向动力学特性研究. 飞行力学. 2021(03): 14-19+26 .
    10. 沈恩楠,郭同庆,吴江鹏,胡家亮,张桂江. 高超声速全动翼面全时域耦合分析方法及应用. 航空学报. 2021(08): 199-212 .
    11. 李映坤,陈雄,许进升. 基于流固耦合的斜激波冲击作用下曲壁板气动弹性分析. 航空动力学报. 2020(04): 783-792 .
    12. 桂业伟,刘磊,魏东. 长航时高超声速飞行器的综合热效应问题. 空气动力学学报. 2020(04): 641-650 . 本站查看
    13. 王梓伊,张伟伟,刘磊. 高超声速飞行器热气动弹性仿真计算方法综述. 气体物理. 2020(06): 1-15 .
    14. 杨超,赵黄达,吴志刚. 吸气式高超声速飞行器热气动弹性研究进展. 北京航空航天大学学报. 2019(10): 1911-1923 .

    Other cited types(16)

Catalog

    Article views (473) PDF downloads (283) Cited by(30)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return