Citation: | YE Zhengyin, MENG Xianzong, LIU Cheng, YE Liuqing. Progress and prospects on aeroelasticity of hypersonic vehicles[J]. ACTA AERODYNAMICA SINICA, 2018, 36(6): 984-994. DOI: 10.7638/kqdlxxb-2018.0060 |
[1] |
张攀峰, 詹世革.从国家自然科学基金资助看高超声速流动研究的发展规划[J].航空学报, 2015, 36(1):1-6. http://d.wanfangdata.com.cn/Periodical/hkxb201501002
Zhang P F, Zhan S G. Development of hypersonic flow research in China based on supperoted projects of NSFC[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):1-6. (in Chinese). http://d.wanfangdata.com.cn/Periodical/hkxb201501002
|
[2] |
McNamara J J, Friedmann P P. Aeroelastic and aero-thermoelastic analysis in hypersonic flow:past, present, and future[J]. AIAA Journal, 2011, 49(6):1089-1122. doi: 10.2514/1.J050882
|
[3] |
杨超, 许赟, 谢长川.高超声速飞行器气动弹性力学研究综述[J].航空学报, 2010, 31(1):1-11. http://d.old.wanfangdata.com.cn/Periodical/hkxb201001001
Yang C, Xu Y, Xie C C. Review of studies on aeroelasticity of hypersonic vehicles.[J] Acta Aeronautica et Astronautica Sinica, 2010, 31(1):1-11. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201001001
|
[4] |
杨超, 黄超, 吴志刚, 等.气动伺服弹性研究的进展与挑战[J].航空学报, 2015, 36(4):1011-1033. http://d.old.wanfangdata.com.cn/Periodical/hkxb201504001
Yang C, Huang C, Wu Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1011-1033. http://d.old.wanfangdata.com.cn/Periodical/hkxb201504001
|
[5] |
陈刚, 李跃明.非定常流场降阶模型及其应用研究进展与展望[J].力学进展, 2011, 41(6):686-701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201104103493
Chen G, Li Y M. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advances in Mechanics, 2011, 41(6):686-701. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201104103493
|
[6] |
Gupta K K, Choi S B, Ibrahim H. Development-fluid-dynamics-based aerothermoelastic simulation capability with application to flight vehicles[J]. Journal of Aircraft, 2015:1-9. doi: 10.2514/1.C033346
|
[7] |
张章, 黄伟, 唐明章, 等.空间再入飞行器热气动弹性数值研究进展[J].航天返回与遥感, 2016, 37(1):10-21. doi: 10.3969/j.issn.1009-8518.2016.01.002
Zhang Z, Huang W, Tang M Z, et al. A review of aerothermoelastic numerical research on space reentry vehicles[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(1):10-21. (in Chinese) doi: 10.3969/j.issn.1009-8518.2016.01.002
|
[8] |
杨智春, 田玮, 谷迎松, 等.带集中非线性的机翼气动弹性问题研究进展[J].航空学报, 2016, 37(7):2013-2044. http://d.old.wanfangdata.com.cn/Periodical/hkxb201607001
Yang Z C, Tian W, Gu Y S, et al. Advance in the study on wing aeroelasticity with concentrated nonlinearity[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2013-2044. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201607001
|
[9] |
Nydick I, Friedmann P, Zhong X. Hypersonic panel flutter studies on curved panels[C]//36th Structures, Structural Dynamics and Materials Conference. 1995: 1485.
|
[10] |
Selvam R P, Qu Z Q, Zheng Q. Three-dimensional nonlinear panel flutter at supersonic euler flow[R]. AIAA 2002-1485.
|
[11] |
Lighthill M J. Oscillating airfoils at high Mach number[J]. Journal of Aeronautical Sciences, 1953, 20(6):402-406. doi: 10.2514/8.2657
|
[12] |
Ashley H, Zartarian G. Piston theory-a new aerodynamic tool for the aeroelastician[J]. Journal of the Aeronautical Sciences, 1956, 23(12):1109-1118. doi: 10.2514/8.3740
|
[13] |
张伟伟, 叶正寅.基于当地流活塞理论的气动弹性计算方法研究[J].力学学报, 2005, 37(5):632-639. doi: 10.3321/j.issn:0459-1879.2005.05.015
Zhang W W, Ye Z Y. Numerical method of aerielasticity based on local piston theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(5):632-639. (in Chinese) doi: 10.3321/j.issn:0459-1879.2005.05.015
|
[14] |
史晓鸣, 杨炳渊, 李海东, 等.基于当地流活塞理论的翼-身组合体飞行器大攻角超声速颤振分析[J].空气动力学学报, 2012, 30(5):664-667. http://www.kqdlxxb.com/CN/abstract/abstract11049.shtml
Shi X M, Yang B Y, Li H D, et al. Supersonic flutter analysis of wing-fuselage complete vehicle of high attack angle with local piston theory based on CFD technology[J]. Acta Aerodynamica Sinica, 2012, 30(5):664-667. (in Chinese) http://www.kqdlxxb.com/CN/abstract/abstract11049.shtml
|
[15] |
McNamara J J, Crowell A R, Friedmann P P, et al. Approximate modeling of unsteady aerodynamics for hypersonic aeroelasticity[J]. Journal of Aircraft, 2010, 47(6):1932-1945. doi: 10.2514/1.C000190
|
[16] |
韩汉桥, 张陈安, 王发民.一种高空高超声速非定常气动力近似模型[J].力学学报, 2013, 45(5):690-698. http://www.cqvip.com/QK/91029X/201305/47268557.html
Han H Q, Zhang C A, Wang F M. An approximate model of unsteady aerodynamics for hypersonic problems at high altitude[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5):690-698. (in Chinese) http://www.cqvip.com/QK/91029X/201305/47268557.html
|
[17] |
Liu W, Zhang C A, Han H Q, et al. Local piston theory with viscous correction and its application[J]. AIAA Journal, 2017, 55(1):942-954. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=809cd48c69a90cdce3a8909268db6c37
|
[18] |
Meijer M C, Dala L. Generalized formulation and review of piston theory for airfoils[J]. AIAA Journal, 2016, 54(1):1-11. doi: 10.2514/1.J054903
|
[19] |
Lucia D J, Beran P S, Silva W A. Reduced-order modeling:new approaches for computational physics[J]. Progress in Aerospace Sciences, 2004, 40(1):51-117. doi: 10.1016-j.paerosci.2003.12.001/
|
[20] |
Skujins T, Cesnik C. Reduced-order modeling of hypersonic vehicle unsteady aerodynamics[R]. AIAA 2010-8127.
|
[21] |
Omran A, Newman B. Full envelope nonlinear parameter-varying model approach for stmospheric flight dynamics[J]. Journal of Guidance, Control and Dynamics, 2012, 35(1):270-283. doi: 10.2514/1.51577
|
[22] |
Chen X, Liu L, Zhou S, et al. Adding-point strategy for reduced-order hypersonic aerothermodynamics modeling based on fuzzy clustering[J]. Chinese Journal of Mechanical Engineering, 2016, 29(5):983-991. doi: 10.3901/CJME.2016.0128.016
|
[23] |
窦立谦, 冀然.基于神经网络的非线性气动弹性系统辨识[J].计算机应用与软件, 2017, 34(6):236-241. doi: 10.3969/j.issn.1000-386x.2017.06.043
Dou L Q, Ji R. Identification of nonlinear aeroelastic systems based on neural network[J]. Computer Applocation and Software, 2017, 34(6):236-241. (in Chinese) doi: 10.3969/j.issn.1000-386x.2017.06.043
|
[24] |
Tang L, Chen P C, Liu D, et al. Proper orthogonal decomposition and response surface method for TPS/RLV structural design and optimization: X-34 case study[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005: 839.
|
[25] |
Crowell A R, McNamara J J. Model reduction of computational aerothermodynamics for hypersonic aerothermoelasticity[J]. AIAA Journal, 2012, 50(1):74-84. doi: 10.2514/1.J051094
|
[26] |
殷亮, 蒋军成, 张立翔.非一致性界面热流固耦合作用的整体求解[J].应用数学和力学, 2012, 33(2):210-220. doi: 10.3879/j.issn.1000-0887.2012.02.006
Yin L, Jiang J C, Zhang L X. Monolithic approach to thermal fluid structure interaction with non-conforming interfaces[J]. Applied Mathematics and Mechanics, 2012, 33(2):210-220. (in Chinese) doi: 10.3879/j.issn.1000-0887.2012.02.006
|
[27] |
Lin T, Zhang S H, Song H W, et al. Deformation analysis of hot stamping tools by thermal-fluid-mechanical coupled approach based on MpCCI[J]. Materials Research Innovations, 2014, 18(S4):1068-1073. doi: 10.1179/1432891714Z.000000000822
|
[28] |
Chen G, Sun J, Li Y M. Adaptive reduced-order-model-based control-law design for active flutter suppression[J]. Journal of Aircraft, 2012, 49(4):973-980. doi: 10.2514/1.C031236
|
[29] |
周强, 陈刚, 李跃明.基于CFD降阶的非线性气动弹性稳定性分析[J].振动与冲击, 2016, 35(16):17-23. http://d.old.wanfangdata.com.cn/Periodical/zdycj201616004
Zhou Q, Chen G, Li Y M. Nonlinear aeroelastic stability analysis based on CFD reduced order models[J]. Journal of Vibration and Shock, 2016, 35(16):17-23. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zdycj201616004
|
[30] |
彭治雨, 石义雷, 龚红明, 等.高超声速气动热预测技术及发展趋势[J].航空学报, 2015, 36(1):325-345. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501026
Peng Z Y, Shi Y L, Gong H M, et al. Hypersonic aeroheating perdiction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):325-345. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201501026
|
[31] |
Crowell A R, McNamara J J, Kecskemety K M, et al. A reduced order aerothermodynamic modeling framework for hypersonic aerothermoelasticity[R]. AIAA 2010-2969.
|
[32] |
Falkiewicz N J, S Cesnik C E, Crowell A R, et al. Reduced-order aerothermoelastic framework for hypersonic vehicle control simulation[J]. AIAA Journal, 2011, 49(8):1625-1646. doi: 10.2514/1.J050802
|
[33] |
Weaver A B, Alexeenko A A, Greendyke R B, et al. Flowfield uncertainty analysis for hypersonic computational fluid dynamics simulations[J]. Journal of Thermophysics and Heat Transfer, 2011, 25(1):10-20. doi: 10.2514/1.49522
|
[34] |
Hosder S, Bettis B R. Uncertainty and sensitivity analysis for reentry flows with inherent and model-form uncertainties[J]. Journal of Spacecraft and Rockets, 2012, 49(2):193-206. doi: 10.2514/1.A32102
|
[35] |
Bose D, Brown J L, Prabhu D K, et al. Uncertainty assessment of hypersonic aerothermodynamics prediction capability[J]. Journal of Spacecraft and Rockets, 2013, 50(1):12-18. doi: 10.2514/1.A32268
|
[36] |
张子健, 刘云峰, 姜宗林.振动激发对高超声速气动力/热影响[J].力学学报, 2017, 49(3):616-626. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201703012
Zhang Z J, Liu Y F, Jiang Z L. Effect of vibration excitation on hypersonic aerodynamic and aerothermodynamic[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3):616-626. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201703012
|
[37] |
Culler A J, McNamara J J. Studies on fluid-thermal-structural coupling for aerothermoelasticity in hypersonic flow[J]. AIAA Journal, 2010, 48(8):1721-1738. doi: 10.2514/1.J050193
|
[38] |
Miller B A, McNamara J J. Loosely coupled time-marching of fluid-thermal-structural interactions with time-accurate CFD[R]. AIAA 2015-0686.
|
[39] |
刘磊.高超声速飞行器热气动弹性特性及相似准则研究[D].中国空气动力研究与发展中心, 2014.
Liu L. Study on the characteristics and similatity criterida of aerothermoelasticity for hypersonic vehicle[D]. China Aerodynamics Research and Development Center, 2014. (in Chinese)
|
[40] |
桂业伟, 刘磊, 耿湘人, 等.气动力/热与结构多场耦合计算策略与方法研究[J].工程热物理学报, 2015, 36(5):1047-1051. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201505026.htm
Gui Y W, Liu L, Geng X R. Study on the computation strategy and method of aero-dynamic-thermal-structural coupling problem[J]. Journal of Engineering Thermophysics, 2015, 36(5):1047-1051. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GCRB201505026.htm
|
[41] |
张华山, 张家雄, 何咏梅.高超声速飞行器舵面热颤振数值方法研究[J].导弹与航天运载技术, 2015(5):59-62. http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs201505016
Zhang H S, Zhang J X, He Y M. A numerical method for rudder heat flutter of hypersonic vehicle[J]. Missules and Space Vehicles, 2015(5):59-62. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ddyhtyzjs201505016
|
[42] |
Hua R H, Zhao C X, Ye Z Y, et al. Effect of elastic deformation on the trajectory of aerial separation[J]. Aerospace Science & Technology, 2015, 45(2):128-139. http://www.sciencedirect.com/science/article/pii/S1270963815001303
|
[43] |
许斌, 梅睿, 马建敏, 等.高速柔性飞行器耦合动力学研究进展[J].飞行力学, 2016, 34(3):1-6. http://d.old.wanfangdata.com.cn/Periodical/fxlx201603001
Xu B, Mei R, Ma J M, et al. Development in coupling dynamics of flexible high-speed aircraft[J]. Flight Dynamics, 2016, 34(3):1-6. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxlx201603001
|
[44] |
华如豪, 叶正寅.吸气式高超声速飞行器多学科动力学建模[J].航空学报, 2015, 36(1):346-356. http://d.old.wanfangdata.com.cn/Periodical/hkxb201501027
Hua R H, Ye Z Y. Multidisciplinary dynamics modeling and analysis of a generic hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):346-356. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201501027
|
[45] |
李建林, 唐乾刚, 丰志伟, 等.气动弹性影响下高超声速飞行器动力学建模与分析[J].国防科技大学学报, 2013, 35(1):7-11. doi: 10.3969/j.issn.1001-2486.2013.01.002
Li J L, Tang Q G, Femg Z W, et al. Modelling and analysis of a hypersonic vehicle with aeroelastic effect[J]. Journal of National University of Defense Technology, 2013, 35(1):7-11. (in Chinese) doi: 10.3969/j.issn.1001-2486.2013.01.002
|
[46] |
唐硕, 祝强军.吸气式高超声速飞行器动力学建模研究进展[J].力学进展, 2011, 41(2):187-200. http://www.cqvip.com/Main/Detail.aspx?id=37095563
Tang S, Zhu Q J. Research progress on flight dynamic modleling of airbreathing hypersonic flight vehicles[J]. Advances in Mechanics, 2011, 41(2):187-200. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=37095563
|
[47] |
罗金玲, 李超, 徐锦.高超声速飞行器机体/推进一体化设计的启示[J].航空学报, 2015, 36(1):39-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201501005
Luo J L, Li C, Xu J. Inspiration of hypersonic vehicle with airframe/propulsion integrated design[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):39-48. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201501005
|
[48] |
苏二龙, 罗建军, 黄兴李, 等.考虑气动加热和变截面惯性矩的高超声速飞行器建模与分析[J].宇航学报, 2012, 33(6):690-697. doi: 10.3873/j.issn.1000-1328.2012.06.002
Su E L, Luo J J, Huang X L, et al. Modeling and analysis of hypersonic vehicle considering variable cross-section moment of inertia and aerodynamics heating[J]. Journal of Astronautics, 2012, 33(6):690-697. (in Chinese) doi: 10.3873/j.issn.1000-1328.2012.06.002
|
[49] |
郭帅.高超声速飞行器关键部件的多物理场耦合研究[D].南京: 南京航空航天大学, 2016.
Guo S. Multidisciplinary study of key components in hypersonic flight vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
|
[50] |
苏雪.高超声速热流固多物理场计算研究[D].浙江大学, 2016.
Su X. Numerical research on the hypersonic thermal-fluid-structure multiphysical field[D]. Zhejiang University, 2016. (in Chinese)
|
[51] |
季卫栋.高超声速气动力/热/结构多场耦合问题数值模拟技术研究[D].南京: 南京航空航天大学, 2016.
Ji W D. Numerical simulation of hypersonic fluid-thermal-structural coupled problem[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. (in Chinese)
|
[52] |
肖进, 完颜振海, 杨亮, 等.面向控制的高超声速飞行器一体化建模与分析[J].计算机仿真, 2017, 34(2):92-96, 216. doi: 10.3969/j.issn.1006-9348.2017.02.021
Xiao J, Wanyan Z H, Yang L. Control-oriented integrated modeling and analysis of hypersonic Vehicle[J]. Computer Simulation, 2017, 34(2):92-96, 216. (in Chinese) doi: 10.3969/j.issn.1006-9348.2017.02.021
|
[53] |
Zhang X, Wang Y, Li F, Liu K. Static aerothermoelasticity of hypersonic vehicles[R]. AIAA 2017-2367.
|
[54] |
Danowsky B P, Chrstos J R, Klyde D H, et al. Evaluation of aeroelastic uncertainty analysis methods[J]. Journal of Aircraft, 2010, 47(4):1266-1273. doi: 10.2514/1.47118
|
[55] |
李国曙, 万志强, 杨超.高超声速翼面气动热与静气动弹性综合分析[J].北京航空航天大学学报, 2012, 38(1):53-58. doi: 10.3969/j.issn.1005-4561.2012.01.030
Li G S, Wan Z Q, Yang C. Integrated analysis of aerothermal-aeroelastic wings in hyperconic flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(1):53-58. (in Chinese) doi: 10.3969/j.issn.1005-4561.2012.01.030
|
[56] |
Guo H, Chen Y. Dynamic analysis of two-degree-of-freedom airfoil with freeplay and cubic nonlinearities in supersonic flow[J]. Applied Mathematics and Mechanics, 2012, 33(1):1-14. http://d.wanfangdata.com.cn/Periodical_yysxhlx-e201201001.aspx
|
[57] |
Lamort N, Friedmann P P. Hypersonic aeroelastic and aerothermoelastic studies using computational fluid dynamics[J]. AIAA Journal, 2014, 52(9):2062-2078. doi: 10.2514/1.J053018
|
[58] |
李晓鹏, 宋文萍, 韩忠华, 等.前缘钝化对高超声速舵面气动/热特性影响研究[J].航空计算技术, 2013, 43(2):80-84. doi: 10.3969/j.issn.1671-654X.2013.02.021
Li X P, Song W P, Han Z H, et al. Influence of leading edge bluntness on hypersonic aerodynamic performance of control surface[J]. Aeronautical Computing Technique, 2013, 43(2):80-84. (in Chinese) doi: 10.3969/j.issn.1671-654X.2013.02.021
|
[59] |
史晓鸣, 梅睿, 苏轶龙, 等.舵轴位置对全动舵面气动弹性稳定性影响[J].噪声与振动控制, 2016, 36(3):81-84. http://d.old.wanfangdata.com.cn/Periodical/zsyzdkz201603018
Shi X M, Mei R, Su Y L. Influence of rudder shaft location on aeroelastic stability of an all-moving rudder[J]. Noise and Vibration Control, 2016, 36(3):81-84. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zsyzdkz201603018
|
[60] |
杨享文, 武洁, 叶坤, 等.高超声速全动舵面的热气动弹性研究[J].力学学报, 2014, 46(4):626-630. http://d.wanfangdata.com.cn/Periodical_lxxb201404017.aspx
|
[61] |
Ye K, Ye Z, Zhang Q, et al. Study on areothermoelastic for hypersonic all moving control surface[R]. International Bhurban Conference on Applied Sciences and Technology. IEEE, 2016: 467-475.
|
[62] |
杨享文.高超声速全动舵面的热气动弹性研究[D].西北工业大学, 2012.
Yang X W, Wu J, Ye K. Study on aerothermoelasticity of a hypersonic all-movable control surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 626-630. (in Chinese)
|
[63] |
叶坤, 叶正寅, 屈展, 等.高超声速舵面热气动弹性不确定性及全局灵敏度分析[J].力学学报, 2016, 48(2):278-289. http://d.old.wanfangdata.com.cn/Periodical/lxxb201602003
Ye K, Ye Z Y, Qu Z, et al. Uncertainty and global sensitivity analysis of hypersonic control surface aerothermoelastic[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2):278-289. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lxxb201602003
|
[64] |
刘成, 叶正寅, 叶坤.转捩位置对全动舵面热气动弹性的影响.力学学报, 2017, 49(4):802-810. http://d.old.wanfangdata.com.cn/Periodical/lxxb201704006
Liu C, Ye Z Y, Ye K. The effect of transiton location on aerothermoelasticity of a hypersonic all-movable centrol surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4):802-810. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lxxb201704006
|
[65] |
肖艳平, 杨翊仁, 叶献辉.边界松驰对壁板颤振响应的影响分析[J].工程力学, 2012, 29(11):40-45. doi: 10.6052/j.issn.1000-4750.2011.03.0183
Xiao Y P, Yang Y R, Ye X H. Flutter analysis of panel with boundary conditions relaxation[J]. Engineering Mechanics, 2012, 29(11):40-45. (in Chinese) doi: 10.6052/j.issn.1000-4750.2011.03.0183
|
[66] |
杨智春, 高扬, 谷迎松.复合材料曲壁板颤振特性分析[J].机械科学与技术, 2013, 32(7):1069-1073. http://d.old.wanfangdata.com.cn/Periodical/jxkxyjs201307028
Yang Z C, Gao Y, Gu Y S. Flutter characteristics analysis of composite curved shells[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(7):1069-1073. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jxkxyjs201307028
|
[67] |
张飞霆, 杨智春, 高扬, 等.弹性支承对三维曲壁板颤振特性的影响[J].振动与冲击, 2014, 33(18):1-6, 20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201418001
Zhang F T, Yang Z C, Gao Y, et al. Influence of concentrated elastic support on flutter characteristic of curved panels[J]. Journal of Vibration and Shock, 2014, 33(18):1-6, 20. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201418001
|
[68] |
Sun Q, Xing Y. Exact eigensolutions for flutter of symmetric cross-ply composite laminates at high supersonic speeds[J]. Composite Structures, 2018, 183(1):358-370. http://www.sciencedirect.com/science/article/pii/S0263822316329993
|
[69] |
肖艳平, 杨翊仁, 叶献辉.三维粘弹壁板颤振分析[J].振动与冲击, 2011, 30(1):82-86. doi: 10.3969/j.issn.1000-3835.2011.01.017
Xiao Y P, Yang Y R, Ye X H. Flutter analysis for a three-dimensional viscoelastic panel[J]. Journal of Vibration and Shock, 2011, 30(1):82-86. (in Chinese) doi: 10.3969/j.issn.1000-3835.2011.01.017
|
[70] |
王晓庆, 韩景龙, 员海玮.偏航机动飞行时的壁板颤振问题及优化设计[J].宇航学报, 2011, 32(2):255-260. doi: 10.3873/j.issn.1000-1328.2011.02.004
Wang X Q, Han J L, Yun H W. Problem with panel flutter and its optimization design in yaw maneuver flight[J]. Journal of Astronautics, 2011, 32(2):255-260. (in Chinese) doi: 10.3873/j.issn.1000-1328.2011.02.004
|
[71] |
杨智春, 周建, 谷迎松.超音速气流中受热曲壁板的非线性颤振特性[J].力学学报, 2012, 44(1):30-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200106422
Yang Z C, Zhou J, Gu Y S. Nonlinear thermal flutter of heated curved panels in supersonic air flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1):30-38. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201200106422
|
[72] |
Yang X D, Yu T J, Zhang W, et al. Damping effect on supersonic panel flutter of composite plate with viscoelastic mid-layer[J]. Composite Structures, 2015, 137:105-113.
|
[73] |
周建, 杨智春, 谷迎松.两面受气动载荷的壁板热气动弹性稳定性分析[J].中国科学:技术科学, 2012, 55(12):60-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205296332
Zhou J, Yang Z C, Gu Y S. Aeroelastic stability analysis of heated panel with aerodynamic loading on both surfaces[J]. Sci China Tech Sci, 2012, 55(12):60-66. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205296332
|
[74] |
Wang X, Yang Z, Wang W, et al. Nonlinear viscoelastic heated panel flutter with aerodynamic loading exerted on both surfaces[J]. Journal of Sound and Vibration, 2017, 409:306-317. doi: 10.1016/j.jsv.2017.07.033
|
[75] |
Spottswood S M, Eason T, Beberniss T. Influence of shock-boundary layer interactions on the dynamic response of a flexible panel[C]//Proceedings of the ISMA-2012, 2012: 17-19.
|
[76] |
Spottswood S M, Eason T, Beberniss T. Full-field dynamic pressure and displacement measurements of a panel excited by Shcok boundary-layer interaction[R]. AIAA 2013-2016.
|
[77] |
Visbal M R. On the interaction of an oblique shock with a flexible panel[J]. Journal of Fluids & Structures, 2012, 30:219-225. http://www.sciencedirect.com/science/article/pii/S0889974612000369
|
[78] |
Brouwer K, Crowell A R, McNamara J J. Rapid prediction of unsteady aeroelastic loads in shock-dominated Flows[R]. AIAA 2015-0687.
|
[79] |
Ostoich C, Bodony D, Geubelle P. Aeroelastic response of a panel under high speed turbulent boundary layers using direct numerical simulation[R]. AIAA 2013-1662.
|
[80] |
熊宴斌.超声速主流条件发汗冷却的流动和传热机理研究[D].清华大学, 2013.
Xiong Y B. Study of the mechanism of flow and heat transfer on supersonic transpiration cooling[D]. Tsinghua University, 2013. (in Chinese)
|
[81] |
刘晨.复杂燃烧流场数值模拟方法研究[D].南京航空航天大学, 2009.
Liu C. Numerical methods for complex combustion flowfields[D]. Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
|
[82] |
Holden M. Historical review of experimental studies and prediction methods to describe laminar and turbulent shock wave/boundary layer interactions in hypersonic flows[R]. AIAA 2006-494, 2006.
|
[83] |
李祥晟, 丰镇平.燃烧室内自激励振荡燃烧的数值研究[J].燃烧科学与技术, 2006, 12(1):51-54. doi: 10.3321/j.issn:1006-8740.2006.01.011
LI X S, Feng Z P. Numerical study on self-excited oscillation combustion in a combustor[J]. Journal of Combustion Science and Technology, 2006, 12(1):51-54. (in Chinese) doi: 10.3321/j.issn:1006-8740.2006.01.011
|
[84] |
吴海燕, 周进, 汪洪波, 等.不同结构超声速燃烧斜坡喷注器性能对比研究[J].航空动力学报, 2009, 24(7):1476-1481. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200907007
Wu H Y, Zhou J, Wang H B, et al. Performance comparison between the ramp injectors with different structures in supersonic combustion[J]. Journal of Aerospace Power, 2009, 24(7):1476-1481. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkdlxb200907007
|
[85] |
Abdelsalam T M, Tiwari S N, Mohieldin T O. Effects of ramp swept angle in supersonic mixing[R]. AIAA 2000-2377.
|
[86] |
Kwak E, Lee S. Numerical study of the effect of exit configurations on supersonic inlet buzz[R]. AIAA 2013-3025.
|
[87] |
Lewis M J, Hastings D E. The influence of flow non-uniformities in air breathing hypersonic propulsion system[R]. AIAA 87-2079, 1987.
|
[88] |
潘沙, 田正雨, 冯定华, 等.超燃冲压发动机唇口气动热计算研究与分析[J].航空动力学报, 2009, 24(9):2096-2100. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb200909029
Pan S, Tian Z Y, Feng D H, et al. Computation and analysis of aeroheating of scramjet inlet cowl lip[J]. Journal of Aerospace Power, 2009, 24(9):2096-2100. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb200909029
|
[89] |
Blevins R D, Holehouse I, Wentz K R. Thermoacoustic loads and fatigue of hypersonic vehicle skin panels[J]. Journal of Aircraft, 1993, 30(6):971-978. doi: 10.2514/3.46441
|
[90] |
Ho S Y, Paull A. Coupled thermal, structural and vibrational analysis of a hypersonic engine for flight test[J]. Aerospace Science & Technology, 2006, 10(5):420-426. http://www.sciencedirect.com/science/article/pii/S1270963806000344
|
[91] |
Culler A J, Mcnamara J J. Impact of fluid-thermal-structural coupling on response prediction of hypersonic skin panels[J]. AIAA Journal, 2011, 49(11):2393-2406. doi: 10.2514/1.J050617
|
[92] |
Duzel U, Eyi S. The effects of static aeroelasticity on the performance of supersonic/hypersonic nozzles[R]. AIAA 2014-2770.
|
[93] |
Frauholz S, Hosters N, et al. Fluid-structure interacton in the context of a scramjet Intake[R]. AIAA 2014-2449.
|
[94] |
Kline H L, Palacios F, Alonso J J. Sensitivity of the performance of a 3-Dimensional hypersonic inlet to shape deformations[R]. AIAA 2014-3228.
|
[95] |
Reinert J D, Nompelis I, Candler G V. Coupled conjugate heat transfer simulation for a scramjet inlet at Mach 8[R]. AIAA 2017-4502.
|
[96] |
Dai G, Zeng L, Jia H, et al. Preliminary study on the influence of aerothermoelastic deformation on 2-D hypersonic inlet performance[R]. AIAA 2017-2403.
|
[97] |
王世芬, 李清泉.高超音速湍流分离表面热流率的脉动特性[J].力学学报(英文版), 1991, 23(4):426-432. http://www.cnki.com.cn/Article/CJFDTotal-LXXB199104005.htm
Wang S F, Li Q Q. Nature of surface heat transfer fluctuation in a hypersonic separated turbulent flow[J]. Acta Mechanica Sinica, 1991, 23(4):426-432. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-LXXB199104005.htm
|
[98] |
Yao C, Liu Z, Ma R, et al. Numerical vibration analysis of supersonic mixed-compression intake[C]//ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, 2013.
|
[99] |
Yao C, Zhang G H, Xu F C, et al. Influence of wall vibration on the aero performance of transonic diffuser[R]. AIAA 2015-2456.
|
[100] |
Tabanli H, Yuceil K B. An Experimental investigation of the effect of boundary layer on an internal compression inlet[R]. AIAA 2015-2936.
|
[101] |
Tabanli H, Yuceil K B. Flow Visualization and fluctuating pressure measurements in an internal compression inlet[R]. AIAA 2015-0111.
|
[102] |
叶坤, 叶正寅, 屈展.高超声速进气道气动弹性的影响研究[J].推进技术, 2016, 37(12):2270-2277. http://d.old.wanfangdata.com.cn/Periodical/tjjs201612009
Ye K, Ye Z Y, Qu Z. Effects of panel vibration on performance of combustor for scramjet[J]. Journal of Propulsion Technology, 2017, 38(2):386-398. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tjjs201612009
|
[103] |
王晓朋.超燃冲压发动机壁板振动对化学反应的影响[D].西北工业大学硕士论文, 2013.
Wang X P. The impact of scramjet engine panel vibration on chemical reaction[D]. Northwest Polytechnical University, 2013. (in Chinese)
|
[104] |
叶坤, 叶正寅, 屈展.超燃冲压发动机壁板振动对燃烧室性能的影响[J].推进技术, 2017, 38(2):386-398. http://d.old.wanfangdata.com.cn/Periodical/tjjs201702018
Ye K, Ye Z Y, Qu Z. Effects of panel vibration on performance of combustor for scramjet[J]. Journal of Propulsion Technology, 2017, 38(2):386-398. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tjjs201702018
|
[105] |
叶正寅, 吕广亮.火箭发动机喷管非定常侧向力和流固耦合研究进展[J].航空工程进展, 2015, 6(1):1-12. doi: 10.3969/j.issn.1674-8190.2015.01.001
Ye Z Y, Lü G L. Advances in the study of unsteady side-loads and fluid/structure innteraction of rocket nozzles[J]. Advances in Aeronautical Science and Engineering, 2015, 6(1):1-12. (in Chinese) doi: 10.3969/j.issn.1674-8190.2015.01.001
|
[106] |
Stark R, Génin C. Flow separation in rocket nozzles under high altitude condition[J]. Shock Waves, 2013, 18:1-6. doi: 10.1007/s00193-016-0631-6
|
[107] |
Pekkari L O. Aeroelastic stability of supersonic nozzles with separated flow[R]. AIAA 1993-2588.
|
[108] |
Östlund J, Damgaard T, Frey M. Side-load phenomena in highly overexpanded rocket nozzles[J]. Journal of Propulsion and Power, 2004, 20(4):695-704. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ02145819/
|
[109] |
Zhao X, Bayyuk S, Zhang S. Aeroelastic response of rocket nozzles to asymmetric thrust loading[J]. Computers & Fluids, 2013, 76(10):128-148. http://www.sciencedirect.com/science/article/pii/S0045793013000467
|
[110] |
Zhang S, Shotorban B, Pohly J, et al. Aeroelastic response of rocket nozzles subected to combined thrust and side loads[R]. AIAA 2015-3414.
|
[111] |
吴朋朋, 杨月诚, 高双武, 等.固体火箭发动机喷管分离流动流固耦合数值仿真[J].固体火箭技术, 2012, 35(3):344-347. doi: 10.3969/j.issn.1006-2793.2012.03.012
Wu P, Yang Y, Gao S, et al. Fluid-structure coupled numerical simulation of flow separation in SRM nozzle[J]. Journal of Solid Rocket Technology, 2012, 35(3):344-347. (in Chinese) doi: 10.3969/j.issn.1006-2793.2012.03.012
|
[112] |
胡海峰, 鲍福廷, 蔡强, 等.大膨胀比火箭发动机喷管流动分离与气动弹性分析[J].固体火箭技术, 2011, 34(6):711-716. doi: 10.3969/j.issn.1006-2793.2011.06.009
Hu H, Bao F, Cai Q, et al. Flow separation and aeroelastic coupling analysis in overexpanded rocket nozzles[J]. Journal of Solid Rocket Technology, 2011, 34(6):711-716. (in Chinese) doi: 10.3969/j.issn.1006-2793.2011.06.009
|
[113] |
Lefrançois E. Fluid-structure interaction in rocket engines[J]. European Journal of Computational Mechanics, 2010, 19(5-7):637-652. doi: 10.3166/ejcm.19.637-652
|
[114] |
Wang T S, Zhao X, Zhang S, et al. Development of an aeroelastic modeling capability for transient nozzle flow analysis[R]. AIAA 2013-3641.
|
[115] |
Lü G L, Ye Z Y. Investigation on the mechanism of aeroelastic hazard during ground test of rocket nozzle[J]. Sci China:Tech Sci, 2012, 55(9):2462-2473.(in Chinese) doi: 10.1007/s11431-012-4939-x
|
[1] | ZHENG Haibo, GAO Chao, HE Chengjun, HUANG Jiangtao, SHU Bowen. Fluid-structural interaction characteristics of serpentine nozzles with different offset ratios[J]. ACTA AERODYNAMICA SINICA. DOI: 10.7638/kqdlxxb-2024.0116 |
[2] | CHEN Yongfu, LU Hongbo, WEN Shuai, CHEN Xing, SUN Riming. Thrust/Drag measurement techniques of a free flight scramjet in a shock tunnel[J]. ACTA AERODYNAMICA SINICA, 2022, 40(1): 141-148. DOI: 10.7638/kqdlxxb-2021.0300 |
[3] | ZHANG Junlong, CHANG Juntao, WANG Xuan, BAO Wen. Recent research progress on flame characteristics in strut-equipped scramjet combustor[J]. ACTA AERODYNAMICA SINICA, 2020, 38(3): 577-592. DOI: 10.7638/kqdlxxb-2019.0168 |
[4] | ZHAI Xiaofei, ZHANG Kouli, BAI Hanchen, LI Guozhi. Chemical nonequilibrium flow in nozzle of a supersonic combustor direct-connected test bed with shock heating[J]. ACTA AERODYNAMICA SINICA, 2020, 38(2): 268-273. DOI: 10.7638/kqdlxxb-2018.0100 |
[5] | WANG Xiaodong, LU Deyong. Numerical study of test medium effects based on HyShot scramjet[J]. ACTA AERODYNAMICA SINICA, 2018, 36(2): 307-314. DOI: 10.7638/kqdlxxb-2017.0017 |
[6] | Fu Chunguang, Zeng Hao, He Liming, Sun Chaojiao, Zhao Kun. Investigation on the influence of nozzle configuration on performance of a 2-stage PDE[J]. ACTA AERODYNAMICA SINICA, 2016, 34(6): 770-777. DOI: 10.7638/kqdlxxb-2016.0063 |
[7] | SHI Jingwei, WANG Zhanxue, ZHANG Xiaobo, LIU Zengwen. Study on counter-flow thrust vectoring nozzle jet attachment and control[J]. ACTA AERODYNAMICA SINICA, 2013, 31(6): 723-726. DOI: 10.7638/kqdlxxb-2012.0014 |
[8] | LI Bin, LI Jing-ping, YU Hong-ru, CHEN Hong. Experimental methods of exhaust nozzle in ramjet engines[J]. ACTA AERODYNAMICA SINICA, 2010, 28(6): 621-625. |
[9] | LI Xiang-yu, LU Fang-yun, ZHANG Duo. The design of free-vortex aerodynamic window's nozzle[J]. ACTA AERODYNAMICA SINICA, 2006, 24(4): 461-465. |
[10] | Calculation on plug nozzle flow field[J]. ACTA AERODYNAMICA SINICA, 2002, 20(4): 465-469. |
1. |
苑凯华,田海涛,付志超,刘凯. 空天飞行器气动弹性问题研究进展. 振动与冲击. 2025(07): 275-285 .
![]() | |
2. |
王泽,宋述芳,王旭,张伟伟. 数据驱动的气动热建模预测方法总结与展望. 气体物理. 2024(04): 39-55 .
![]() | |
3. |
余婧,韩青华,陈江涛,吴晓军,赵娇,郑小虎,刘深深. 考虑机身累积热变形的高速飞机气动布局稳健优化. 空气动力学学报. 2024(10): 98-108 .
![]() | |
4. |
王谋远,苏纬仪,孙斐,崔晟,张文强,关开港. 高超声速进气道宽范围工作多场耦合效应及快速预测研究. 推进技术. 2023(02): 177-191 .
![]() | |
5. |
王硕,黄进安,代成浩,陈海波. 高速流场中高频振动面板的能量辐射传递模型研究. 应用力学学报. 2023(01): 57-65 .
![]() | |
6. |
叶柳青,叶正寅,洪正,叶坤. 振荡激波作用下受热壁板主共振特性分析. 振动与冲击. 2022(09): 41-50 .
![]() | |
7. |
刘小川,马君峰,白春玉,李凯翔,邹学锋,王彬文,张永杰. 航空结构动力学研究的进展与展望. 应用力学学报. 2022(03): 409-436+407 .
![]() | |
8. |
齐麟,杨亚,陈意芬,殷玮,赵宏宇. 结构随机细长体飞行器动力学建模与分析. 系统仿真技术. 2022(04): 240-249 .
![]() | |
9. |
尚逸鸣,华如豪,袁先旭,唐志共,王中伟. 考虑弹性效应的乘波体纵向动力学特性研究. 飞行力学. 2021(03): 14-19+26 .
![]() | |
10. |
沈恩楠,郭同庆,吴江鹏,胡家亮,张桂江. 高超声速全动翼面全时域耦合分析方法及应用. 航空学报. 2021(08): 199-212 .
![]() | |
11. |
李映坤,陈雄,许进升. 基于流固耦合的斜激波冲击作用下曲壁板气动弹性分析. 航空动力学报. 2020(04): 783-792 .
![]() | |
12. |
桂业伟,刘磊,魏东. 长航时高超声速飞行器的综合热效应问题. 空气动力学学报. 2020(04): 641-650 .
![]() | |
13. |
王梓伊,张伟伟,刘磊. 高超声速飞行器热气动弹性仿真计算方法综述. 气体物理. 2020(06): 1-15 .
![]() | |
14. |
杨超,赵黄达,吴志刚. 吸气式高超声速飞行器热气动弹性研究进展. 北京航空航天大学学报. 2019(10): 1911-1923 .
![]() |