OU Jihui, ZHAO Lei, CHEN Jie. Numerical simulation of hypersonic flows with local rarefaction effect[J]. ACTA AERODYNAMICA SINICA, 2019, 37(2): 193-200. DOI: 10.7638/kqdlxxb-2018.0179
Citation: OU Jihui, ZHAO Lei, CHEN Jie. Numerical simulation of hypersonic flows with local rarefaction effect[J]. ACTA AERODYNAMICA SINICA, 2019, 37(2): 193-200. DOI: 10.7638/kqdlxxb-2018.0179

Numerical simulation of hypersonic flows with local rarefaction effect

More Information
  • Received Date: October 10, 2018
  • Revised Date: January 09, 2019
  • Available Online: January 07, 2021
  • For vehicles at high Mach number and high altitude in near space, CFD may not be able to provide accurate aerodynamic coefficients of the vehicles, for example, the drag force and the lift to drag ratio. The cause is now acknowledged as the rarefaction effect of the air that has not been taken into consideration in conventional CFD. The current numerical methods for rarefied gas flow are hard to be used in practice due to their enormous computation costs. An accurate and efficient numerical method is necessary. A rarefaction parameter Zh, which characterizes the effect induced by large mean free path and high shear strengths, was proposed in reference[1] published in Acta Aerodynamica Sinica in 2018 by Chen Jie and Zhao Lei. Moreover, the relationship between effective viscosity and Zh was also proposed for the consideration of local rarefaction effect. In the present paper, this effective viscosity model is embed in the CFD to simulate a hypersonic flow over a blunt plate at Mach number 15. The results show that the drag calculated by the new model decreases and the lift-drag ratio increases, compared with that obtained by the conventional CFD method. This belaviour is qualitatively consistent with the existing flight test result. In addition, the computational cost is not be appreciably increased.
  • [1]
    陈杰, 赵磊.高超声速流存在局部稀薄效应的一个判据及相应的流动特性[J].空气动力学学报, 2018, 36(1):4-11. doi: 10.7638/kqdlxxb-2017.0179

    CHEN J, ZHAO L. A criterion for the existence of local rarefaction in a hypersonic flow field and corresponding flow characteristics[J]. Acta Aerodynamica Sinica, 2018, 36(1):4-11. (in Chinese) doi: 10.7638/kqdlxxb-2017.0179
    [2]
    周恒, 张涵信.空气动力学的新问题[J].中国科学:物理学力学天文学, 2015, 45:104709. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201510011

    ZHOU H, ZHANG H X. New problems of aerodynamics[J]. Sci Sin-Phys Mech Astron, 2015, 45:104709. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201510011
    [3]
    李志辉, 吴振宇.阿波罗指令舱稀薄气体动力学特征的蒙特卡罗数值模拟[J].空气动力学学报, 1996, 14(2):230-233. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600331478

    LI Z H, WU Z Y. DSMC simulation on rarefied aerodynamics of Apollo-CM[J]. Acta Aerodynamica Sinica, 1996, 14(2):230-233. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600331478
    [4]
    庄逢甘, 崔尔杰, 张涵信.未来空间飞行器的某些发展和空气动力学的任务[C]//中国第一届近代空气动力学与气动热力学会议论文集.绵阳: 中国空气动力研究与发展中心, 2006: 1-12.

    ZHUANG F G, CUI E J, ZHANG H X. Some development of future spacecrafts and aerodynamics tasks[C]//Proc of First Aerodynamics and Aerothermodynamics. Mianyang: China Aerodynamics Research and Development Center, 2006: 1-12. (in Chinese)
    [5]
    BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford:Clarendon Press. 1994.
    [6]
    RAULT D F G. Aerodymics of the Shuttle Orbiter at high altitudes[J]. Journal of Spacecraft and Rockets, 1994, 31(6):944-952. doi: 10.2514/3.26542
    [7]
    BIRD G A. The DSMC method[M]. CreateSpace Independent Publishing Platform, 2013.
    [8]
    樊菁.稀薄气体动力学:进展与应用[J].力学进展, 2013, 43(2):185-201. http://d.old.wanfangdata.com.cn/Periodical/lxysj200206001

    FAN J. Rarefied gas dynamics:Advances and applications[J]. Advances in Mechanics, 2013, 43(2):185-201. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lxysj200206001
    [9]
    WU L, WHITE C, SCANLON T C, et al. Deterministic numerical solutions of the Boltzmann equation using the fast spectral method[J]. J Comput Phys, 2013, 250(1):27-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=29b93160e5140312b9c0321cc3dbde21
    [10]
    NIE X B, DOOLEN G D, CHEN S. Lattice-Boltzmann simulations of fluid flows in MEMS[J]. Journal of Statistical Physics, 2002, 107(1-2):279-289. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_comp-gas%2f9806001
    [11]
    HE X, LUO L S. Lattice Boltzmann model for the incompressible Navier-Stokes equation[J]. Journal of Statistical Physics, 1997, 88(3-4):927-944. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0908.4520
    [12]
    LIN C D, LUO K H. MRT discrete Boltzmann method for compressible exothermic reactive flows[J]. Computers & Fluids, 2018, 166:176-183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8aff99b372a0638855a86e93832dda54
    [13]
    XU K, HUANG J C. A unified gas-kinetic scheme for continuum and rarefied flows[J]. Journal of Computational Physics, 2010, 229(20):7747-7764. doi: 10.1016/j.jcp.2010.06.032
    [14]
    LI Z H, ZHANG H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Comput Phys, 2004, 193(2):708-738. doi: 10.1016/j.jcp.2003.08.022
    [15]
    SCHWARTZENTRUBER T E, SCALABRIN L C, BOYD I D. Hybrid particle-continuum simulations of nonequilibrium hypersonic blunt-body flowfields[J]. Journal of Thermophysics and Heat Transfer, 2008, 22(1):29-37. doi: 10.2514/1.30216
    [16]
    XU X, WANG X, ZHANG M, et al. A parallelized hybrid N-S/DSMC-IP approach based on adaptive structured/unstructured overlapping grids for hypersonic transitional flows[J]. Journal of Computational Physics, 2018:S0021-9991(18)30321-8. http://www.sciencedirect.com/science/article/pii/S0021999118303218
    [17]
    LOFTHOUSE A J, SCALABRIN L C, BOYD I D. Velocity slip and temperature jump in hypersonic aerothermodynamics[J]. Journal of thermophysics and heat transfer, 2008, 22(1):38-49. doi: 10.2514/1.31280
    [18]
    TITOV E, BURT J, JOSYULA E, et al. Implications of slip boundary conditions on surface properties in hypersonic flows[C]//43rd AIAA Thermophysics Conference. 2012: 3307.
    [19]
    黄飞, 张亮, 程晓丽, 等.连续流失效对近空间飞行器气动特性的影响[J].空气动力学学报, 2013, 31(5):623-628. http://www.kqdlxxb.com/CN/abstract/abstract11315.shtml

    HUANG F, ZHANG L, CHENG X L, et al. Effects of continuum breakdown on aerodynamics of near space vehicle[J]. Acta Aerodynamica Sinica, 2013, 31(5):623-628. (in Chinese) http://www.kqdlxxb.com/CN/abstract/abstract11315.shtml
    [20]
    LOCKERBY D A, REESE J M, GALLIS M A. Capturing the Knudsen layer in continuum-fluid models of nonequilibrium gas flows[J]. AIAA Journal, 2005, 43(6):1391-1393. doi: 10.2514/1.13530
    [21]
    GUO Z L, SHI B C, ZHENG C G. An extended Navier-Stokes formulation for gas flows in the Knudsen layer near a wall[J]. EPL (Europhysics Letters), 2007, 80(2):24001. doi: 10.1209/0295-5075/80/24001
    [22]
    DONGARI N, ZHANG Y, REESE J M. Modeling of Knudsen layer effects in micro/nanoscale gas flows[J]. Journal of Fluids Engineering, 2011, 133(7):071101. doi: 10.1115/1.4004364
    [23]
    赵磊.高超声速后掠钝板边界层横流定常涡失稳的研究[D].天津大学, 2017.

    ZHAO L. Study on instability of stationary crossflow vortices in hypersonic swept blunt plate boundary layers[D]. Tianjin University, 2017. (in Chinese)
    [24]
    邓小刚, 张涵信. NND格式的推广及在粘流计算中的应用[J].空气动力学学报, 1994, 12(2):121-129. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX402.000.htm

    DENG X G, ZHANG H X. The extentions of NND schemes and application to viscous flow calculations[J]. Acta Aerodynamica Sinica, 1994, 12(2):121-129. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX402.000.htm
    [25]
    JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228. doi: 10.1006/jcph.1996.0130
  • Related Articles

    [1]LI Junhong, CHEN Zhi, JIN Xuhong, MIAO Wenbo. Effects of gas ejection on aerodynamic force and heating of near-space lifting vehicles[J]. ACTA AERODYNAMICA SINICA, 2024, 42(8): 1-9. DOI: 10.7638/kqdlxxb-2024.0008
    [2]PI Xingcai, LI Zhihui, PENG Aoping, WU Junlin, JIANG Xinyu. Kinetic hybrid method based on correction of N-S constitutive relation[J]. ACTA AERODYNAMICA SINICA, 2021, 39(2): 125-132. DOI: 10.7638/kqdlxxb-2019.0130
    [3]YI Shihe, LIU Xiaolin, NIU Haibo, LU Xiaoge, HE Lin. Experimental study on flow stability of hypersonic boundary layer[J]. ACTA AERODYNAMICA SINICA, 2020, 38(1): 137-142. DOI: 10.7638/kqdlxxb-2019.0129
    [4]SHI Lei, GONG Anlong, YANG Yunjun, ZHOU Weijiang. Numerical study on local separation flow over body flaps of hypersonic vehicle[J]. ACTA AERODYNAMICA SINICA, 2017, 35(4): 510-515. DOI: 10.7638/kqdlxxb-2015.0192
    [5]LI Qian, ZHAO Zhongliang, YE Youda, TAO Yang, MA Shang, LI Yuping, WANG Xiaobing. Numerical and experimental investigation on aerodynamic characteristics for one typical near space vehicle[J]. ACTA AERODYNAMICA SINICA, 2017, 35(4): 504-509. DOI: 10.7638/kqdlxxb-2016.0116
    [6]Zhou Heng, Zhang Hanxin. Two problems in the transition and turbulence for near space hypersonic flying vehicles[J]. ACTA AERODYNAMICA SINICA, 2017, 35(2): 151-155. DOI: 10.7638/kqdlxxb-2017.0016
    [7]DENG Fan, REN Huaiyu, LI Xuguo, XIE Feng. Rudder effect of near-space hypersonic gliding vehicle with different control surfaces[J]. ACTA AERODYNAMICA SINICA, 2014, 32(2): 240-245. DOI: 10.7638/kqdlxxb-2012.0135
    [8]YU Zhefeng, BU Shaoqing, SHI Anhua, MA Ping, LIANG Shichang, HUANG Jie. Research on the scaling law for the RCS of underdense turbulent wake of hypersonic vehicle[J]. ACTA AERODYNAMICA SINICA, 2014, 32(1): 57-61. DOI: 10.7638/kqdlxxb-2012.0044
    [9]HUANG Fei, ZHANG Liang, CHENG Xiao-li, SHEN Qing. Effects of continuum breakdown on aerodynamics of near space vehicle[J]. ACTA AERODYNAMICA SINICA, 2013, 31(5): 623-628. DOI: 10.7638/kqdlxxb-2012.0002
    [10]MAO Mei-liang, WAN Zhao, CHEN Liang-zhong, CHEN Jian-qiang. Studies of hypersonic viscous interaction[J]. ACTA AERODYNAMICA SINICA, 2013, 31(2): 137-143. DOI: 10.7638/kqdlxxb-2011.0061
  • Cited by

    Periodical cited type(3)

    1. 许啸,马新建,张军,沈妍. 高超声速稀薄流场AUSM分裂式DSMC-IP方法研究. 工程力学. 2022(01): 228-242 .
    2. 高莹莹,陈政伟,谢飞,赵小程,杨凯威. 尖化前缘局部稀薄气体效应对气动热影响研究. 导弹与航天运载技术(中英文). 2022(05): 144-147 .
    3. 陈杰,张家骐,欧吉辉. 气体稀薄效应对热流计算的影响. 空气动力学学报. 2019(05): 691-697 . 本站查看

    Other cited types(2)

Catalog

    Article views (255) PDF downloads (116) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return