ZHAO Lin, YANG Xu'nan, FANG Genshen, CUI Wei, SONG Lili, GE Yaojun. Observation-based study for the evolution of vertical wind profiles in the boundary layer during super typhoon Mangkhut[J]. ACTA AERODYNAMICA SINICA, 2019, 37(1): 43-54. DOI: 10.7638/kqdlxxb-2018.0297
Citation: ZHAO Lin, YANG Xu'nan, FANG Genshen, CUI Wei, SONG Lili, GE Yaojun. Observation-based study for the evolution of vertical wind profiles in the boundary layer during super typhoon Mangkhut[J]. ACTA AERODYNAMICA SINICA, 2019, 37(1): 43-54. DOI: 10.7638/kqdlxxb-2018.0297

Observation-based study for the evolution of vertical wind profiles in the boundary layer during super typhoon Mangkhut

More Information
  • Received Date: December 11, 2018
  • Revised Date: December 18, 2018
  • Available Online: January 07, 2021
  • The Doppler LiDAR was used to measure the periphery wind field of super typhoon 'Mangkhut' in Xuwen-the north shore of Qiongzhou Strait. The measurement lasted from 12:28 on September 15th, 2018 to 13:53 on September 17th, 2018, during which the evolution of wind speed profiles on the boundary layer was obtained from 29 hours before the landfall of the typhoon to 21 hours after its landfall. The evolution of wind speed profiles of the typhoon is summarized into 4 periods:low-speed-wind period, strong wind shear period before landfall, low-level jet period, and typhoon-far-away period. It is found that, there are 2 types of wind profiles which are different from monsoon:the S shape profile and anti-C shape profile; within the range of 230 km~750 km from the center of the typhoon, the maximum wind speed height increases first and then decreases with the increasing distance between the observation site and the typhoon center; the average maximum wind speed height and average power law exponent are respectively, about 360 m and 0.41 before the typhoon landfall, while the values change to 800 m and 0.28 after the landfall; Vickery empirical model was used to fit the S shape profiles and the anti-C shape profiles, and the results indicate that, the Vickery model can reproduce the anti-C shape of the hurricane boundary layer (i.e. low-level jet) but can not the S shape profiles.
  • [1]
    潘晶晶, 赵林, 冀春晓, 等.东南沿海登陆台风近地脉动特性分析[J].建筑结构学报, 2016, 37(1):85-90. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201601010

    PAN J J, ZHAO L, JI C X, et al. Fluctuating wind characteristics near flat ground during typhoon landfall in southeast coastal areas of China[J]. Journal of Building Structures, 2016, 37(1):85-90. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201601010
    [2]
    PAN J, ZHAO L, LIANG X, et al. Wind characteristics near flat ground at and inside the periphery of strong typhoons during the landfall process[C]//14th International Symposium on Structural Engineering, 2016.
    [3]
    CHOI E C C. Characteristics of typhoons over the South China Sea[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1978, 3(4):353-365. doi: 10.1016-0167-6105(78)90038-7/
    [4]
    MENG Y, MATSUI, HIBI. An analytical model for simulation of the wind field in a typhoon boundary layer[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1995, 56(2-3):291-310. http://www.sciencedirect.com/science/article/pii/0167610594000145
    [5]
    VICKERY P J, SKERLJ P F, TWISDALE L A. Simulation of Hurricane Risk in the U. S. using empirical track model[J]. Journal of Structural Engineering, 2000, 126(10):1222-1237. doi: 10.1061/(ASCE)0733-9445(2000)126:10(1222)
    [6]
    KEPERT J. The dynamics of boundary layer jets within the tropical cyclone core. Part Ⅰ:Linear theory[J]. J Atmos Sci, 2001, 58(58):2485-2501. http://adsabs.harvard.edu/abs/2001JAtS...58.2469K
    [7]
    KEPERT J, WANG Y. The dynamics of boundary layer jets within the tropical cyclone core. Part Ⅱ:Nonlinear enhancement[J]. Journal of the Atmospheric Sciences, 2001, 58(17):2469-2484. doi: 10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2
    [8]
    GIAMMANCO I M, SCHROEDER J L, POWELL M D. GPS dropwindsonde and WSR-88D observations of tropical cyclone vertical wind profiles and their characteristics[J]. Weather & Forecasting, 2013, 28(1):77-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2f1605180cf035d99cd8853b5f75b456
    [9]
    POWELL M D, VICKERY P J, REINHOLD T A. Reduced drag coefficient for high wind speeds in tropical cyclones[J]. Nature, 2003, 422(6929):279-283. doi: 10.1038/nature01481
    [10]
    VICKERY P J, WADHERA D, POWELL M D, et al. A hurricane boundary layer and wind field model for use in engineering applications[J]. Journal of Applied Meteorology & Climatology, 2009, 48(2):381-405. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c0dd216b73be8aa6bc31829e752bc67c
    [11]
    方平治, 赵兵科, 鲁小琴, 等.华东沿海地带台风风廓线特征的观测个例分析[J].大气科学, 2013, 37(5):1091-1098. http://d.old.wanfangdata.com.cn/Periodical/daqikx201305011

    FANG P Z, ZHAO B K, LU X Q, et al. Case studies on the characteristics of the coastal wind profiles of three typhoons landing along East China[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(5):1091-1098. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/daqikx201305011
    [12]
    方平治, 赵兵科, 鲁小琴, 等.台风影响下福州地区的风廓线特征[J].自然灾害学报, 2013, 22(2):91-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013060500053502

    FANG P Z, ZHAO B K, LU X Q, et al. Study on characteristics of wind profiles affected by landed typhoons in Fuzhou area[J]. Journal of Natural Disasters, 2013, 22(2):91-98. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013060500053502
    [13]
    HOCK T F, FRANKLIN J L. The NCAR GPS dropwindsonde[J]. Bulletin of the American Meteorological Society, 1999, 80(3):407-420. doi: 10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2
    [14]
    FRANKLIN J L, BLACK M L, VALDE K. GPS dropwindsonde wind profiles in hurricanes and their operational implications[J]. Weather & Forecasting, 2003, 18(1):32-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6922a94a8e3344fc40f6d23842a2ca3c
    [15]
    ZHAO L, LU A, ZHU L, et al. Radial pressure profile of typhoon field near ground surface observed by distributed meteorologic stations[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2013, 122(11):105-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af4109045fb30922834f0f120f454d42
    [16]
    SONG L L, MAO H Q, TANG H Y, et al. Observation and analysis of Guangdong coastal gales in the near-surface layer[J]. Journal of Tropical Meteorology, 2004, 20(6):731-736. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdqxxb200406014
    [17]
    SONG L, MAO H. Analysis on boundary layer turbulent features of landfalling typhoon[J]. Acta Meteorologica Sinica, 2005, 63(6):915-921.
    [18]
    SONG L, CHEN W, WANG B, et al. Characteristics of wind profiles in the landfalling typhoon boundary layer[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2016, 149:77-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5ef180452175e19776c52125ea0e2c54
    [19]
    TAMURA Y, IWATANI Y, HIBI K, et al. Profiles of mean wind speeds and vertical turbulence intensities measured at seashore and two inland sites using doppler sodars[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2007, 95(6):411-427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8b001a1eeee854d8d5ba6cf7979df986
    [20]
    李利孝, 肖仪清, 宋丽莉, 等.基于风观测塔和风廓线雷达实测的强台风黑格比风剖面研究[J].工程力学, 2012, 29(9):284-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205319357

    LI L X, XIAO Y Q, SONG L L, et al. Study on wind profile of typhoon hagupit using wind observed tower and wind profile radar measurements[J]. Engineering Mechanics, 2012, 29(9):284-293. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205319357
    [21]
    肖仪清, 李利孝, 宋丽莉, 等.基于近海海面观测的台风黑格比风特性研究[J].空气动力学学报, 2012, 30(3):380-387. doi: 10.3969/j.issn.0258-1825.2012.03.017

    XIAO Y Q, LI L X, SONG L L, et al. Study on wind characteristics of typhoon Hagupit based on offshore sea surface measurements[J]. Acta Aerodynamica Sinica, 2012, 30(3):380-387. (in Chinese) doi: 10.3969/j.issn.0258-1825.2012.03.017
    [22]
    王澈泉, 李正农, 胡佳星, 等.城市地貌高空台风特性及湍流积分尺度的研究[J].空气动力学学报, 2017, 35(6):801-806. doi: 10.7638/kqdlxxb-2015.0090

    WANG C Q, LI Z N, HU J X, et al. Study on typhoon characteristics at high urban landform altitude and turbulence integral length scale[J]. Acta Aerodynamica Sinica, 2017, 35(6):801-806. (in Chinese) doi: 10.7638/kqdlxxb-2015.0090
    [23]
    胡尚瑜, 聂功恒, 李秋胜.近海岸强风风场特性现场实测研究[J].空气动力学学报, 2017, 35(2):242-250. doi: 10.7638/kqdlxxb-2015.0009

    HU S Y, NIE G H, LI Q S. Field measurement study on wind characteristics of strong windstorm in coastal terrain[J]. Acta Aerodynamica Sinica, 2017, 35(2):242-250. (in Chinese) doi: 10.7638/kqdlxxb-2015.0009
    [24]
    王浩, 李爱群, 黄瑞新, 等.润扬悬索桥桥址区韦帕台风特性现场实测研究[J].工程力学, 2009, 26(4):128-133. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200904023.htm

    WANG H, LI A Q, HUANG R X, et al. Field measurements on wind characteristics of typhoon wipha at runyang suspension bridge[J]. Engineering Mechanics, 2009, 26(4):128-133. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200904023.htm
    [25]
    CAO S, TAMURA Y, KIKUCHI N, et al. Wind characteristics of a strong typhoon[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2009, 97(1):11-21. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201201001
    [26]
    李秋胜, 戴益民, 李正农, 等.强台风"黑格比"登陆过程中近地风场特性[J].建筑结构学报, 2010, 31(4):54-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzjgxb201004007

    LI Q S, DAI Y M, LI Z N, et al. Surface layer wind field characteristics during a severe typhoon 'Hagupit' landfalling[J]. Journal of Building Structures, 2010, 31(4):54-61. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzjgxb201004007
    [27]
    王小松, 郭增伟, 袁航, 等.台风"布拉万"远端风场阵风特性分析[J].振动与冲击, 2018, 37(8):34-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201808006

    WANG X S, GUO Z W, YUAN H, et al. Gust characteristic analysis of wind field at the periphery of typhoon 'Bolaven'[J]. Journal of Vibration and Shock, 2018, 37(8):34-41. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201808006
    [28]
    罗叠峰, 李正农, 回忆.海边三栋相邻高层建筑顶部台风风场实测分析[J].建筑结构学报, 2014, 35(12):133-139. http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201412017

    LUO D F, LI Z N, HUI Y. Field measurement and analysis of typhoon wind field on top of three adjacent high-rise buildings at seaside[J]. Journal of Building Structures, 2014, 35(12):133-139. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jzjgxb201412017
    [29]
    FANG G, ZHAO L, CAO S, et al. A novel analytical model for wind field simulation under typhoon boundary layer considering multi-field correlation and height-dependency[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2018, 175:77-89. http://www.sciencedirect.com/science/article/pii/S0167610517307262
    [30]
    WAGNER R. Comparison test of WLS200S-22(Final)[R]. DTU Wind Energy, LC I-046(EN), 2014: 78-84.
    [31]
    VICKERY P J, MASTERS F J, POWELL M D, et al. Hurricane hazard modeling:The past, present, and future[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2009, 97(7):392-405. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211278214/
    [32]
    GRAY W M. Recent advances in tropical cyclone research from rawinsonde composite analysis[R]. 1981: 166-180.
  • Related Articles

    [1]WU Puyuan, ZHU Yiding. Spatial-temporal evolution of Lagrangian structures in a transitional Mach 6 boundary layer at high Reynolds number[J]. ACTA AERODYNAMICA SINICA, 2024, 42(8): 108-113. DOI: 10.7638/kqdlxxb-2024.0095
    [2]HE Yuncheng, FU Jiyang., LI Qiusheng, CHEN Bowei, CHEN Wenchao. Field measurement of the global structure and wind field of typhoons in South China[J]. ACTA AERODYNAMICA SINICA, 2021, 39(4): 129-146. DOI: 10.7638/kqdlxxb-2021.0078
    [3]JI Baifeng, LIU Guangyi, YIN Xu, QU Weilian. Effects of terrain roughness on downburst wind profile characteristics[J]. ACTA AERODYNAMICA SINICA, 2019, 37(3): 393-399. DOI: 10.7638/kqdlxxb-2018.0117
    [4]LI Runze, ZHANG Yufei, CHEN Haixin. Evolution and development of "man-in-loop" in aerodynamic optimization design[J]. ACTA AERODYNAMICA SINICA, 2017, 35(4): 529-543. DOI: 10.7638/kqdlxxb-2017.0076
    [5]XIAO Yiqing, LI Lixiao, SONG Lili, QIN Peng. Study on wind characteristics of typhoon Hagupit based on offshore sea surface measurements[J]. ACTA AERODYNAMICA SINICA, 2012, 30(3): 380-387.
    [6]HAN Gui-lai, JIANG Zong-lin, WANG Chun, ZHANG Fan. Study on evolution mechanisms of cylindrically-diverging gaseous detonations[J]. ACTA AERODYNAMICA SINICA, 2009, 27(z1): 69-76.
    [7]ZHAO Hai-bo, ZHENG Chu-guang. A stochastic algorithm for the dynamic evolution process by particle deposition[J]. ACTA AERODYNAMICA SINICA, 2006, 24(2): 141-146.
    [8]A new method based on the dynamic evolution of airfoil[J]. ACTA AERODYNAMICA SINICA, 2004, 22(2): 175-179.
    [9]YAN Chang-lin, SUN De-Jun, YIN Xie-yuan, TONG Bing-gang. Evolution of shock-accelerated density-stratified interfaces[J]. ACTA AERODYNAMICA SINICA, 2001, 19(2): 228-233.
    [10]The Nonlinear Evolution of Axisymmetric Swirling Jets[J]. ACTA AERODYNAMICA SINICA, 2000, 18(z1).
  • Cited by

    Periodical cited type(23)

    1. 朱炜,林捷,施能深,吴国伟. 木麻黄基干林带对台风“杜苏芮”的防风效应. 防护林科技. 2024(03): 1-6+14 .
    2. 田盛宝,郑淑琴,王艳茹,杨博,张传雄. 基于聚类分析的台风米娜风剖面特征分析. 水利规划与设计. 2024(10): 90-96 .
    3. 吴向阳,官华,徐祖恩,王诗涵,崔巍,赵林. 典型工程场地台风剖面及台风作用下结构气动阻尼研究. 交通科学与工程. 2024(06): 93-101 .
    4. 王立忠,洪义,高洋洋,黄铭枫,国振,赖踊卿,朱嵘华,杨秦敏,何奔. 近海风电结构台风环境动力灾变与控制. 力学学报. 2023(03): 567-587 .
    5. 朱强,金耀,王俊博,李亚华. 台风“梅花”作用下大跨悬索桥风场特性分析. 交通科技. 2023(02): 73-77+84 .
    6. 钟天任,章鑫,邓志辉,严兴. 1822号台风“山竹”引起的南海北部热异常. 海洋预报. 2023(02): 11-21 .
    7. 刘瑞雪,任少蕾. 台风灾害下城市绿地园林树木风灾损伤及影响因素. 中国城市林业. 2023(02): 76-82 .
    8. 员亦雯,柯世堂,赵永发,王硕,陈明珠,任贺贺. 台风过境全过程水平风速变化中海气交换作用机制与影响因子研究. 太阳能学报. 2023(08): 386-395 .
    9. 曾加东,宋子函,张志田. 台风风特性现场实测与数值模拟研究综述. 科学技术与工程. 2023(28): 11937-11946 .
    10. 张寒,王浩,徐梓栋,陶天友,茅建校,郜辉. 考虑台风空间位置的桥址区风特性模型实测研究. 振动工程学报. 2023(05): 1430-1436 .
    11. 张传雄,叶思成,郑华,黄张琦,郑峰,王艳茹,李正农. 温州地区台风和下击暴流风场特征观测研究. 自然灾害学报. 2023(06): 113-122 .
    12. 李心雨,杨昀,李自如,王惠群,管卫兵,何杰. WRF大气模式与台风经验模型在超强台风“山竹”过程重构中的比较分析. 海洋工程. 2022(04): 53-64+111 .
    13. 常蕊,朱蓉,赵大军. 登陆台风影响下离地300 m高度内的强风特征. 大气科学. 2022(05): 1071-1086 .
    14. 陈雯超,宋丽莉,王丙兰,刘爱君. 强台风的致灾大风特征及与倒塌房屋的关联分析. 空气动力学学报. 2021(04): 98-106 . 本站查看
    15. 廖孙策,黄铭枫,楼文娟,林巍,肖志斌. 台风“山竹”影响下的城市风场数值模拟研究. 空气动力学学报. 2021(04): 107-116 . 本站查看
    16. 李田田,屈宏雅,朱蓉,李永平,汤胜茗. 不同大气稳定度下台风“莫拉克”(2009)的近地风场特性. 空气动力学学报. 2021(04): 117-128 . 本站查看
    17. 傅军,李洁,吴强. 激光测风雷达在风场观测领域的应用及展望. 空气动力学学报. 2021(04): 172-179 . 本站查看
    18. 董浩天,陶韬,杜晓庆. 沿海复杂地形台风登陆过程风场多尺度数值模拟. 空气动力学学报. 2021(04): 147-152 . 本站查看
    19. 何运成,傅继阳,李秋胜,陈柏纬,陈雯超. 华南地区台风全局化结构及风场特征实测研究. 空气动力学学报. 2021(04): 129-146 . 本站查看
    20. 陈蔚翔,王桂娟,蔡晶. 广东省台风预警信号发布和高级别停课预警信号特征. 广东气象. 2020(02): 58-61 .
    21. 廖海黎,李明水,马存明,王骑,孙延国,周强. 桥梁风工程2019年度研究进展. 土木与环境工程学报(中英文). 2020(05): 56-66 .
    22. 史文浩,汤杰,陈勇航,赵兵科,汤胜茗,杨文杰,邬贤文. 多普勒激光雷达探测台风“利奇马”边界层风场精度分析. 热带气象学报. 2020(05): 577-589 .
    23. 赵林,王骑,宋神友,陈伟乐,吴明远,廖海黎,葛耀君. 深中通道伶仃洋大桥(主跨1666 m)抗风性能研究. 中国公路学报. 2019(10): 57-66 .

    Other cited types(21)

Catalog

    Article views (475) PDF downloads (150) Cited by(44)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return