Citation: | SU Caihong, SONG Mingzhen. Intermodal exchange and wall temperature effect in a supersonic boundary layer[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1056-1063. DOI: 10.7638/kqdlxxb-2019.0048 |
[1] |
REED H L, PEREZ E, KUEHL J, et al. Verification and validation issues in hypersonic stability and transition prediction[J]. Journal of Spacecraft and Rockets, 2015, 52(1):29-37. DOI: 10.2514/1.a32825
|
[2] |
陈坚强, 涂国华, 张毅锋, 等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030
CHEN J Q, TU G H, ZHANG Y F, et al. Hypersonic boundary layer transition:what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3):311-337.(in Chinese) DOI: 10.7638/kqdlxxb-2017.0030
|
[3] |
罗纪生.高超声速边界层的转捩及预测[J].航空学报, 2015, 36(1):357-372. doi: 10.7527/S1000-6893.2014.0244
LUO J S. Transition and prediction for hypersonic boundary layers[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(1):357-372.(in Chinese) DOI: 10.7527/S1000-6893.2014.0244
|
[4] |
SU C H. The reliability of the improved eN method for the transition prediction of boundary layers on a flat plate[J]. Science China Physics, Mechanics and Astronomy, 2012, 55(5):837-843. doi: 10.1007/s11433-012-4692-y
|
[5] |
MACK L M. Boundary-layer linear stability theory[R]. AGARD Rep.709. California: Jet Propulsion Laboratory, California Institute of Technology, 1984.
|
[6] |
SU C H, ZHOU H. Transition prediction of a hypersonic boundary layer over a cone at small angle of attack:with the improvement of e-N method[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2009, 52(1):115-123. DOI: 10.1007/s11433-009-0006-4
|
[7] |
SU C H, ZHOU H. Transition prediction for supersonic and hypersonic boundary layers on a cone with angle of attack[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2009, 52(8):1223-1232. DOI: 10.1007/s11433-009-0162-6
|
[8] |
SU C H, ZHOU H. Transition prediction of the supersonic boundary layer on a cone under the consideration of receptivity to slow acoustic waves[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(10):1875-1882. DOI: 10.1007/s11433-011-4472-0
|
[9] |
KING R A. Three-dimensional boundary-layer transition on a cone at Mach 3.5[J]. Experiments in Fluids, 1992, 13(5): 305-314. DOI: 10.1007/BF00209502
|
[10] |
GOLDSTEIN M E. The evolution of Tollmien-Sclichting waves near a leading edge[J]. Journal of Fluid Mechanics, 1983, 127:59-81. DOI: 10.1017/s002211208300261x
|
[11] |
GOLDSTEIN M E. Scattering of acoustic waves into Tollmien-Schlichting waves by small streamwise variations in surface geometry[J]. Journal of Fluid Mechanics, 1985, 154:509-529. DOI: 10.1017/s0022112085001641
|
[12] |
RUBAN A I. On the generation of Tollmien-Schlichting waves by sound[J]. Fluid Dynamics, 1985, 19(5):709-717. DOI: 10.1007/bf01093536
|
[13] |
FEDOROV A V, KHOKHLOV A P. Prehistory of instability in a hypersonic boundary layer[J]. Theoretical and Computational Fluid Dynamics, 2001, 14(6):359-375. DOI: 10.1007/s001620100038
|
[14] |
FEDOROV A V. Receptivity of a high-speed boundary layer to acoustic disturbances[J]. Journal of Fluid Mechanics, 2003, 491:101-129. DOI: 10.1017/s0022112003005263
|
[15] |
FEDOROV A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43(1):79-95. DOI: 10.1146/annurev-fluid-122109-160750
|
[16] |
MA Y B, ZHONG X L. Receptivity of a supersonic boundary layer over a flat plate. Part 1. Wave structures and interactions[J]. Journal of Fluid Mechanics, 2003, 488: 31-78. DOI: 10.1017/s0022112003004786
|
[17] |
MA Y B, ZHONG X L. Receptivity of a supersonic boundary layer over a flat plate. Part 2. Receptivity to free-stream sound[J]. Journal of Fluid Mechanics, 2003, 488: 79-121. DOI: 10.1017/s0022112003004798
|
[18] |
GAO J, LUO J S, WU X S. Receptivity of hypersonic boundary layer due to fast-slow acoustics interaction[J]. Acta Mechanica Sinica, 2015, 31(6):899-909. DOI: 10.1007/s10409-015-0504-8
|
[19] |
WAN BB, LUO J S, SU C H. Response of a hypersonic blunt cone boundary layer to slow acoustic waves with assessment of various routes of receptivity[J]. Applied Mathematics and Mechanics, 2018, 39(11):1643-1660. DOI: 10.1007/s10483-018-2391-6
|
[20] |
MA Y B, ZHONG X L. Receptivity of a supersonic boundary layer over a flat plate. Part 3. Effects of different types of free-stream disturbances[J]. Journal of Fluid Mechanics, 2005, 532:63-109. DOI: 10.1017/s0022112005003836
|
[21] |
BALAKUMAR P. Receptivity of hypersonic boundary layers to acoustic andvortical disturbances (invited)[C]//Proc of the 45th AIAA Fluid Dynamics Conference, Dallas, TX. Reston, Virginia: AIAA, 2015. DOI: 10.2514/6.2015-2473
|
[22] |
高军.超声速边界层的稳定性分析方法及声波感受性[D].天津: 天津大学, 2014.
GAO J. The method of the stability analysis and receptivity to acoustics in supersonic boundary layers[D]. Tianjin: Tianjin University, 2014.(in Chinese)
|
[23] |
张永明. PSE在可压缩边界层中扰动演化和超音速边界层二次失稳中的应用[D].天津: 天津大学, 2008.
ZHANG Y M. Applications of PSE to evolution of disturbances in compressible boundary layers and to secondary instability in supersonic boundary layers[D]. Tianjin: Tianjin University, 2008.(in Chinese)
|
[24] |
ZHANG Y M, ZHOU H. Verification of parabolized stability equations for its application to compressible boundary layers[J]. Applied Mathematics and Mechanics, 2007, 28(8):987-998. DOI: 10.1007/s10483-007-0801-3
|
[25] |
ZHANG Y M, ZHOU H. PSE as applied to problems of transition in compressible boundary layers[J]. Applied Mathematics and Mechanics, 2008, 29(7):833-840. DOI: 10.1007/s10483-008-0701-8
|
[26] |
ZANG T A, CHANG C L, NG L L. The transition prediction toolkit: LST, SIT, PSE, DNS, and LES[C]//Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows, 1992.
|
[27] |
LIU J X, ZHANG S L, FU S. Linear spatial instability analysis in 3D boundary layers using plane-marching 3D-LPSE[J]. Applied Mathematics and Mechanics, 2016, 37(8):1013-1030. DOI: 10.1007/s10483-016-2114-8
|