SUN J F, LU F S, HUANG Y, et al. Rotor airfoil aerodynamic design and evaluation software HRADesign[J]. Acta Aerodynamica Sinica, 2021, 39(4): 59−68. DOI: 10.7638/kqdlxxb-2019.0106
Citation: SUN J F, LU F S, HUANG Y, et al. Rotor airfoil aerodynamic design and evaluation software HRADesign[J]. Acta Aerodynamica Sinica, 2021, 39(4): 59−68. DOI: 10.7638/kqdlxxb-2019.0106

Rotor airfoil aerodynamic design and evaluation software HRADesign

More Information
  • Received Date: October 15, 2019
  • Revised Date: December 25, 2019
  • Accepted Date: January 04, 2020
  • Available Online: September 08, 2021
  • The HRADesign is a general-purpose rotor airfoil aerodynamic design and evaluation software platform. The main purpose of developing this platform is to provide an universal, efficient, high-fidelity, and robust design optimization framework for designing high-performance rotor airfoils of advanced helicopters. Rotor airfoil design, which is a multi-point, multi-objective, and strong-constrained process, is one of the core techniques of helicopter rotor aerodynamic design. According to the characteristics of rotor airfoil design, the HRADesign has developed multi-objective evolutionary algorithms, a PCA multi-objective dimensionality reduction technique, an airfoil parameterization based CST method, Kriging surrogate models, high-fidelity CFD analysis tools and so on, and has also constructed a multi-objectives optimization process based on evolutionary algorithms. By introducing the platform architecture, the main functional modules, and the multi-objective optimization process in detail, the flexibility of the system architecture design and the completeness of the functional modules are demonstrated. At last, system functions had been verified through three examples including a ADODG benchmark case, a conventional multi-objective rotor-airfoil optimization, and an optimization test considering multi-objective dimensionality reduction. The results show that the overall performance of the optimized rotor airfoil is significantly improved under the constraints, which verifies the effectiveness and reliability of the optimization system.
  • [1]
    LEISHMAN J G. Principle of helicopter aerodynamic[M]. Cambridge University Press, 2006.
    [2]
    JAMESON A, PIERCE N, MARTINELLI L, et al. Optimum aerodynamic design using the Navier-Stokes equations[C]//35th Aerospace Sciences Meeting and Exhibit, Reno, NV. Reston, Virginia: AIAA, 1997. doi: 10.2514/6.1997-101
    [3]
    NIELSEN E J, ANDERSON W K. Recent improvements in aerodynamic design optimization on unstructured meshes[J]. AIAA Journal, 2002, 40(6): 1155-1163. DOI: 10.2514/2.1765.
    [4]
    COELLO COELLO C A, LAMONT G B, Van VELDUIZEN D A. Evolutionary algorithms for solving multi-objective problems[M]. Kluwer Academic Publishers, New York, May 2002.
    [5]
    郑传宇, 黄江涛, 周铸, 等. 飞翼翼型高维目标空间多学科综合优化设计[J]. 空气动力学学报, 2017, 35(4): 587-597. doi: 10.7638/kqdlxxb-2017.0079

    ZHENG C Y, HUANG J T, ZHOU Z, et al. Multidisciplinary optimization design of high dimensional target space for flying wing airfoil[J]. Acta Aerodynamica Sinica, 2017, 35(4): 587-597. (in Chinese) doi: 10.7638/kqdlxxb-2017.0079
    [6]
    DADONE L U. Design and analytical study of a rotor airfoil[R]. NASA CR-2988, 1978.
    [7]
    THIBERT J J. The elaboration of a new family of helicopter blade profiles[R]. NASA TM-75907, 1981.
    [8]
    钱瑞战, 乔志德, 陈迎春, 等. 基于N-S方程的旋翼翼型优化设计方法[J]. 飞行力学, 2004, 22(1): 26-29.

    QIAN R Z, QIAO Z D, CHEN Y C, et al. Rotor airfoil optimization design using navier-stokes equations[J]. Flight Dynamics, 2004, 22(1): 26-29. (in Chinese)
    [9]
    孙俊峰, 刘刚, 江雄, 等. 基于Kriging模型的旋翼翼型优化设计研究[J]. 空气动力学学报, 2013, 31(4): 437-441.

    SUN J F, LIU G, JIANG X, et al. Research of rotor airfoil design optimization based on the Kriging model[J]. Acta Aerodynamica Sinica, 2013, 31(4): 437-441. (in Chinese)
    [10]
    丁存伟, 杨旭东. 一种旋翼翼型多点多约束气动优化设计策略[J]. 航空计算技术, 2013, 43(1): 52-57. doi: 10.3969/j.issn.1671-654X.2013.01.014

    DING C W, YANG X D. Multi-point aerodynamic optimization design strategy of rotor airfoil with multi-constrain conditions[J]. Aeronautical Computing Technique, 2013, 43(1): 52-57. (in Chinese) doi: 10.3969/j.issn.1671-654X.2013.01.014
    [11]
    杨慧, 宋文萍, 韩忠华, 等. 旋翼翼型多目标多约束气动优化设计[J]. 航空学报, 2012, 33(7): 1218-1226.

    YANG H, SONG W P, HAN Z H, et al. Multi-objective and multi-constrained optimization design for a helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1218-1226. (in Chinese)
    [12]
    招启军, 王清, 赵国庆. 旋翼翼型定常-非定常特性综合优化设计新方法[J]. 南京航空航天大学学报, 2014, 46(3): 355-363. doi: 10.16356/j.1005-2615.2014.03.006

    ZHAO Q J, WANG Q, ZHAO G Q. New optimization design method for rotor airfoil considering steady-unsteady characteristics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(3): 355-363. (in Chinese)DOI: 10.16356/j.1005-2615.2014.03.006.
    [13]
    LÓPEZ JAIMES A, COELLO COELLO C A, CHAKRABORTY D. Objective reduction using a feature selection technique[C]//Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation - GECCO '08, Atlanta, GA, USA. New York: ACM Press, 2008: 673-680. doi: 10.1145/1389095.1389228
    [14]
    周草臣. 基于PCA的高维多目标优化算法研究[D]. 重庆: 重庆大学, 2014.

    ZHOU C C. The study on many-objective optimization algorithms based on PCA[D]. Chongqing: Chongqing University, 2014. (in Chinese)
    [15]
    HUBAND S, HINGSTON P, BARONE L, et al. A review of multiobjective test problems and a scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477-506. DOI: 10.1109/TEVC.2005.861417.
    [16]
    SHANG R H, ZHANG K, JIAO L C, et al. A novel algorithm for many-objective dimension reductions: Pareto-PCA-NSGA-II[C]//Proc of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China. IEEE, 2014: 1974-1981. doi: 10.1109/CEC.2014.6900346
    [17]
    LES PIEGL, WAYNE TILLER. The NURBS book[M], Springer, 1997.
    [18]
    KULFAN B. Recent extensions and applications of the “CST” universal parametric geometry representation method[C]//Proc of the 7th AIAA ATIO Conf, 2nd CEIAT Int'l Conf on Innov and Integr in Aero Sciences, 17th LTA Systems Tech Conf; followed by 2nd TEOS Forum, Belfast, Northern Ireland. Reston, Virginia: AIAA, 2007. doi: 10.2514/6.2007-7709
    [19]
    SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[J]. ACM SIGGRAPH Computer Graphics, 1986, 20(4): 151-160. DOI: 10.1145/15886.15903.
    [20]
    THOMPSON J F, SONI B K, WEATHERILL N P. Handbook of grid generation[M]. CRC Press, 1998. doi: 10.1201/9781420050349
    [21]
    MCKAY M D, BECKMAN R J, CONOVER W J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2): 239-245. DOI: 10.1080/00401706.1979.10489755.
    [22]
    方开泰, 马长兴. 正交与均匀试验设计[M]. 北京: 科学与试验出版社, 1980.

    FANG K T, MA C X. Orthogonal and uniform experimental design[M]. Beiing: Science Press, 1980 (in Chinese).
    [23]
    JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using kriging model[J]. Journal of Aircraft, 2005, 42(2): 413-420. DOI: 10.2514/1.6386.
    [24]
    韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.

    HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225. (in Chinese)
    [25]
    牟斌, 江雄, 肖中云, 等. γ-Reθ转捩模型的标定与应用[J]. 空气动力学学报, 2013, 31(1): 103-109.

    MOU B, JIANG X, XIAO Z Y, et al. Implementation and caliberation of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2013, 31(1): 103-109. (in Chinese)
    [26]
    孙俊峰, 周铸, 黄勇, 等. 通用飞行器气动优化设计数字化集成平台——DIPasda[J]. 航空学报, 2020, 41(5): 623348. doi: 10.7527/S1000-6893.2019.23348

    SUN J F, ZHOU Z, HUANG Y, et al. Digital inegrated platform for universal aircraft aerodynamic design optimization: DIPasda[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623348. (in Chinese)doi: 10.7527/S1000-6893.2019.23348.

Catalog

    Article views (462) PDF downloads (94) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return