Citation: | SUN J F, LU F S, HUANG Y, et al. Rotor airfoil aerodynamic design and evaluation software HRADesign[J]. Acta Aerodynamica Sinica, 2021, 39(4): 59−68. DOI: 10.7638/kqdlxxb-2019.0106 |
[1] |
LEISHMAN J G. Principle of helicopter aerodynamic[M]. Cambridge University Press, 2006.
|
[2] |
JAMESON A, PIERCE N, MARTINELLI L, et al. Optimum aerodynamic design using the Navier-Stokes equations[C]//35th Aerospace Sciences Meeting and Exhibit, Reno, NV. Reston, Virginia: AIAA, 1997. doi: 10.2514/6.1997-101
|
[3] |
NIELSEN E J, ANDERSON W K. Recent improvements in aerodynamic design optimization on unstructured meshes[J]. AIAA Journal, 2002, 40(6): 1155-1163. DOI: 10.2514/2.1765.
|
[4] |
COELLO COELLO C A, LAMONT G B, Van VELDUIZEN D A. Evolutionary algorithms for solving multi-objective problems[M]. Kluwer Academic Publishers, New York, May 2002.
|
[5] |
郑传宇, 黄江涛, 周铸, 等. 飞翼翼型高维目标空间多学科综合优化设计[J]. 空气动力学学报, 2017, 35(4): 587-597. doi: 10.7638/kqdlxxb-2017.0079
ZHENG C Y, HUANG J T, ZHOU Z, et al. Multidisciplinary optimization design of high dimensional target space for flying wing airfoil[J]. Acta Aerodynamica Sinica, 2017, 35(4): 587-597. (in Chinese) doi: 10.7638/kqdlxxb-2017.0079
|
[6] |
DADONE L U. Design and analytical study of a rotor airfoil[R]. NASA CR-2988, 1978.
|
[7] |
THIBERT J J. The elaboration of a new family of helicopter blade profiles[R]. NASA TM-75907, 1981.
|
[8] |
钱瑞战, 乔志德, 陈迎春, 等. 基于N-S方程的旋翼翼型优化设计方法[J]. 飞行力学, 2004, 22(1): 26-29.
QIAN R Z, QIAO Z D, CHEN Y C, et al. Rotor airfoil optimization design using navier-stokes equations[J]. Flight Dynamics, 2004, 22(1): 26-29. (in Chinese)
|
[9] |
孙俊峰, 刘刚, 江雄, 等. 基于Kriging模型的旋翼翼型优化设计研究[J]. 空气动力学学报, 2013, 31(4): 437-441.
SUN J F, LIU G, JIANG X, et al. Research of rotor airfoil design optimization based on the Kriging model[J]. Acta Aerodynamica Sinica, 2013, 31(4): 437-441. (in Chinese)
|
[10] |
丁存伟, 杨旭东. 一种旋翼翼型多点多约束气动优化设计策略[J]. 航空计算技术, 2013, 43(1): 52-57. doi: 10.3969/j.issn.1671-654X.2013.01.014
DING C W, YANG X D. Multi-point aerodynamic optimization design strategy of rotor airfoil with multi-constrain conditions[J]. Aeronautical Computing Technique, 2013, 43(1): 52-57. (in Chinese) doi: 10.3969/j.issn.1671-654X.2013.01.014
|
[11] |
杨慧, 宋文萍, 韩忠华, 等. 旋翼翼型多目标多约束气动优化设计[J]. 航空学报, 2012, 33(7): 1218-1226.
YANG H, SONG W P, HAN Z H, et al. Multi-objective and multi-constrained optimization design for a helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1218-1226. (in Chinese)
|
[12] |
招启军, 王清, 赵国庆. 旋翼翼型定常-非定常特性综合优化设计新方法[J]. 南京航空航天大学学报, 2014, 46(3): 355-363. doi: 10.16356/j.1005-2615.2014.03.006
ZHAO Q J, WANG Q, ZHAO G Q. New optimization design method for rotor airfoil considering steady-unsteady characteristics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(3): 355-363. (in Chinese)DOI: 10.16356/j.1005-2615.2014.03.006.
|
[13] |
LÓPEZ JAIMES A, COELLO COELLO C A, CHAKRABORTY D. Objective reduction using a feature selection technique[C]//Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation - GECCO '08, Atlanta, GA, USA. New York: ACM Press, 2008: 673-680. doi: 10.1145/1389095.1389228
|
[14] |
周草臣. 基于PCA的高维多目标优化算法研究[D]. 重庆: 重庆大学, 2014.
ZHOU C C. The study on many-objective optimization algorithms based on PCA[D]. Chongqing: Chongqing University, 2014. (in Chinese)
|
[15] |
HUBAND S, HINGSTON P, BARONE L, et al. A review of multiobjective test problems and a scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477-506. DOI: 10.1109/TEVC.2005.861417.
|
[16] |
SHANG R H, ZHANG K, JIAO L C, et al. A novel algorithm for many-objective dimension reductions: Pareto-PCA-NSGA-II[C]//Proc of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China. IEEE, 2014: 1974-1981. doi: 10.1109/CEC.2014.6900346
|
[17] |
LES PIEGL, WAYNE TILLER. The NURBS book[M], Springer, 1997.
|
[18] |
KULFAN B. Recent extensions and applications of the “CST” universal parametric geometry representation method[C]//Proc of the 7th AIAA ATIO Conf, 2nd CEIAT Int'l Conf on Innov and Integr in Aero Sciences, 17th LTA Systems Tech Conf; followed by 2nd TEOS Forum, Belfast, Northern Ireland. Reston, Virginia: AIAA, 2007. doi: 10.2514/6.2007-7709
|
[19] |
SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[J]. ACM SIGGRAPH Computer Graphics, 1986, 20(4): 151-160. DOI: 10.1145/15886.15903.
|
[20] |
THOMPSON J F, SONI B K, WEATHERILL N P. Handbook of grid generation[M]. CRC Press, 1998. doi: 10.1201/9781420050349
|
[21] |
MCKAY M D, BECKMAN R J, CONOVER W J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2): 239-245. DOI: 10.1080/00401706.1979.10489755.
|
[22] |
方开泰, 马长兴. 正交与均匀试验设计[M]. 北京: 科学与试验出版社, 1980.
FANG K T, MA C X. Orthogonal and uniform experimental design[M]. Beiing: Science Press, 1980 (in Chinese).
|
[23] |
JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using kriging model[J]. Journal of Aircraft, 2005, 42(2): 413-420. DOI: 10.2514/1.6386.
|
[24] |
韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.
HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225. (in Chinese)
|
[25] |
牟斌, 江雄, 肖中云, 等. γ-Reθ转捩模型的标定与应用[J]. 空气动力学学报, 2013, 31(1): 103-109.
MOU B, JIANG X, XIAO Z Y, et al. Implementation and caliberation of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2013, 31(1): 103-109. (in Chinese)
|
[26] |
孙俊峰, 周铸, 黄勇, 等. 通用飞行器气动优化设计数字化集成平台——DIPasda[J]. 航空学报, 2020, 41(5): 623348. doi: 10.7527/S1000-6893.2019.23348
SUN J F, ZHOU Z, HUANG Y, et al. Digital inegrated platform for universal aircraft aerodynamic design optimization: DIPasda[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623348. (in Chinese)doi: 10.7527/S1000-6893.2019.23348.
|