WAN Minping, YANG Yan. Structures and energy transfer in MHD turbulence[J]. ACTA AERODYNAMICA SINICA, 2020, 38(1): 160-170. DOI: 10.7638/kqdlxxb-2019.0150
Citation: WAN Minping, YANG Yan. Structures and energy transfer in MHD turbulence[J]. ACTA AERODYNAMICA SINICA, 2020, 38(1): 160-170. DOI: 10.7638/kqdlxxb-2019.0150

Structures and energy transfer in MHD turbulence

More Information
  • Received Date: November 04, 2019
  • Revised Date: December 19, 2019
  • Available Online: January 07, 2021
  • There are several types of coherent structures in magnetohydrodynamic (MHD) turbulence, including current and vortex structures. The article reviews some of the recent works on the study of coherent structures and the related energy transfer in MHD turbulence. Different from the tubular structures in hydrodynamic (HD) turbulence, the coherent structures in MHD are mostly sheet-like structures, with strong current sheets accompanied by sheet-like vortex structures. Unlike the energy cascade in HD turbulence, where kinetic energy is transferred from large scales to small scales locally, the energy cascade in MHD is more complicated. In addition to the local transfer of kinetic energy, there is also a local transfer of magnetic energies across scales, as well as a non-local conversion between kinetic and magnetic energies. Studies have shown that energy transfer and dissipation in MHD turbulence are strongly intermittent, concentrated in a small area, and associated with coherent structures. In the presence of a strong background magnetic field, the coherent structures in MHD turbulence are elongated in the direction of the background magnetic field, while energy transfer in the same direction is suppressed. In the case of compressible MHD turbulence, the generation of shocks significantly enhances the energy transfer, and at the same time brings a strong intermittency. The scaling of density structure functions is found far from a linear scale, and scaling exponent saturates with the increase of the order of structure functions.
  • [1]
    GOLDSTEIN M L, ROBERTS D A, MATTHAEUS W H. Magnetohydrodynamic turbulence in the solar wind[J]. Annual Review of Astronomy and Astrophysics, 1995, 33(1):283-325. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1204.4479
    [2]
    BISKAMP D. Magnetohydrodynamic turbulence[M]. Cambridge:Cambridge University Press, 2003.
    [3]
    徐复.原子核聚变反应堆中的力学问题[J].力学进展, 1994, 24(3):301-314.

    XU F. Various problems of mechanics in nuclear fusion reactors[J]. Advances in Mechanics, 1994, 24(3):301-314. (in Chinese)
    [4]
    赫新, 陈坚强, 邓小刚. NND格式在多维理想磁流体方程组中的应用[J].空气动力学学报, 2005, 23(3):267-273. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb200503001

    HE X, CHEN J Q, DENG X G. NND scheme's application in multi-dimensional ideal magnetohydrodynamic equations[J]. Acta Aerodynamica Sinica, 2005, 23(3):267-273. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb200503001
    [5]
    李茂, 周孑民, 王长宏. 300 kA铝电解槽电、磁、流多物理场耦合仿真[J].过程工程学报, 2007, 7(2):354-359. http://d.old.wanfangdata.com.cn/Periodical/hgyj200702028

    LI M, ZHOU J M, WANG C H. Coupled simulation of multiple physical fields in a 300kA aluminum electrolysis cell[J]. The Chinese Journal of Process Engineering, 2007, 7(2):354-359. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hgyj200702028
    [6]
    张康平, 田正雨, 冯定华, 等.三维磁流体动力学管道流动加减速控制数值研究[J].空气动力学学报, 2009, 27(4):474-479. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb200904015

    ZHANG K P, TIAN Z Y, FENG D H, et al. Numerical study of acceleration/deceleration control of three-dimensional magnetohydrodynamic flow in channel[J]. Acta Aerodynamica Sinica, 2009, 27(4):474-479. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb200904015
    [7]
    苏纬仪, 陈立红, 张新宇. MHD控制超声速边界层的理论研究和数值分析[J].力学学报, 2016, 42(4):782-788. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201004023

    SU W Y, CHEN L H, ZHANG X Y. Physics and numerical simulations of MHD accelerated supersonic boundary layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4):782-788. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201004023
    [8]
    候俊, 毛洁, 潘华辰.磁流体管流的层流与湍流模型数值模拟[J].核聚变与等离子体物理, 2013, 33(1):7-12. http://d.old.wanfangdata.com.cn/Periodical/hjbydlztwl201301002

    HOU J, MAO J, PAN H C. Numerical simulation of MHD duct flow about laminar and turbulence model[J]. Nuclear Fusion and Plasma Physics, 2013, 33(1):7-12. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hjbydlztwl201301002
    [9]
    孟宣市, 宋科, 龙玥霄, 等. NS-SDBD等离子体流动控制研究现状与展望[J].空气动力学学报, 2018, 36(6):901-916. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201806001

    MENG X S, SONG K, LONG Y X, et al. Airflow control by NS-SDBD plasma actuators[J]. Acta Aerodynamica Sinica, 2018, 36(6):901-916. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201806001
    [10]
    薛明, 高超, 刘峰, 等.非定常激励下等离子体DBD诱导涡特性研究[J].空气动力学学报, 2019, 37(1):83-88. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201901010

    XUE M, GAO C, LIU F, et al. Characteristics of vortex induced by DBD plasma actuator under unsteady excitation in quiescent air[J]. Acta Aerodynamica Sinica, 2019, 37(1):83-88. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201901010
    [11]
    ORSZAG S A, TANG C M. Small-scale structure of two-dimensional magnetohydrodynamic turbulence[J]. Journal of Fluid Mechanics, 1979, 90(1):129-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S002211207900210X
    [12]
    MATTHAEUS W H. Reconnection in two dimensions:localization of vorticity and current near magnetic X-points[J]. Geophysical Research Letter, 1982, 9(6):660-663.
    [13]
    CARBONE V, VELTRI P, MANGENEY A. Coherent structure formation and magnetic field line reconnection in magnetohydrodynamic turbulence[J]. Physics of Fluids A:Fluid Dynamics, 1990, 2(8):1487-1496.
    [14]
    POLITANO H, POUQUET A, SULEM P L. Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence[J]. Physics of Plasmas, 1995, 2:2931-2939.
    [15]
    KINNEY R, MCWILLIAMS J C, TAJIMA T. Coherent structures and turbulent cascades in two-dimensional incompressible magnetohydrodynamic turbulence[J]. Physics of Plasmas, 1995, 2(10):3623-3639.
    [16]
    COWLEY S C, LONGCOPE D W, SUDAN R N. Current sheets in MHD turbulence[J]. Physics Reports, 1997, 283(1-4):227-251. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1302.1460
    [17]
    GLAUERT M B. A study of the magnetohydrodynamic boundary layer on a flat plate[J]. Journal of Fluid Mechanics, 1961, 10:276-288. http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-hxgc201104011
    [18]
    KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences, 1991, 434(1890):9-13.
    [19]
    KOLMOGOROV A N. Dissipation of energy in the locally isotropic turbulence[J]. Proceedings of the Royal Society of London. Series A:Mathematical and Physical Sciences, 1991, 434(1890):15-17. doi: 10.1007-s00401-011-0876-1/
    [20]
    FRISCH U. Turbulence:the legacy of A. N. Kolmogorov[M]. Cambridge:Cambridge University Press, 1995.
    [21]
    GAILITIS A, LIELAUSIS O, PLATACIS E, et al. Colloquium:Laboratory experiments on hydromagnetic dynamos[J]. Reviews of Modern Physics, 2002, 74(4):973. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231427741/
    [22]
    ELMEGREEN B G, SCALO J. Interstellar turbulence I:observations and processes[J]. Annual Review of Astronomy and Astrophysics, 2004, 42:211-273. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226181279/
    [23]
    SAHOO G, PERLEKAR P, PANDIT R. Systematics of the magnetic-Prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence[J]. New Journal of Physics, 2011, 13:013036. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1006.5585
    [24]
    SHE Z S, JACJSON E, ORSZAG S A. Intermittent vortex structures in homogeneous isotropic turbulence[J]. Nature, 1990, 344(6263):226.
    [25]
    VINCENT A, MENEGUZZI M. The spatial structure and statistical properties of homogeneous turbulence[J]. Journal of Fluid Mechanics, 1991, 225:1-20. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1310.2951
    [26]
    JIMÉNEZ J, WRAY A A, SAFFMAN P G, et al. The structures of intense vorticity in isotropic turbulence[J]. Journal of Fluid Mechanics, 1993, 255:65-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1bbb25531961be995277da94003cc35e
    [27]
    ZIKANOV O, THESS A. Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number[J]. Journal of Fluid Mechanics, 1998, 358:299-333. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1002.1822
    [28]
    MININNI P D, POUQUET A G, MONTGOMERY D C. Small-scale structures in three-dimensional magnetohydrodynamic turbulence[J]. Physical Review Letters, 2006, 97:244503. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_physics%2f0607269
    [29]
    MININNI P, LEE E, NORTON A, et al. Flow visualization and field line advection in computational fluid dynamics:application to magnetic fields and turbulent flows[J]. New Journal of Physics, 2008, 10:125007.
    [30]
    GRECO A, MATTHAEUS W H, SERVIDIO S, et al. Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence[J]. The Astrophysical Journal, 2009, 691:L111-L114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210526092
    [31]
    MATTHAEUS W H, WAN M P, SERVIDIO S, et al. Intermittency, nonlinear dynamics and dissipation in solar wind and astrophysical plasmas[J]. Philosophical Transaction of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2015, 373(2041):20140154. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5376344149306b60e15d98d99f60817d
    [32]
    CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A:Fluid Dynamics, 1990, 2(5):765-777. doi: 10.1063-1.857730/
    [33]
    OOI A, MARTIN J, SORIA J, et al. A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence[J]. Journal of Fluid Mechanics, 1999, 381:141-174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112098003681
    [34]
    WANG J C, SHI Y P, WANG L P, et al. Effect of compressibility on the small-scale structures in isotropic turbulence[J]. Journal of Fluid Mechanics, 2012, 713:588-631. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=FLM713\FLM\FLM713\S0022112012004740h.xml
    [35]
    CANTWELL B J. Introduction of symmetry analysis[M]. Cambridge:Cambridge University Press, 2002.
    [36]
    BLACK H M, MANSOUR N N, CANTWELL B J. Topology of fine-scale motions in turbulent channel flow[J]. Journal of Fluid Mechanics, 1996, 310:269-292. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112096001802
    [37]
    DALLAS V, ALEXAKIS A. Structures and dynamics of small scales in decaying magnetohydrodynamic turbulence[J]. Physics of Fluids, 2013, 25:105106. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1304.0695
    [38]
    YANG Y, MATTHAEUS W H, PARASHAR T N, et al. Energy transfer, pressure tensor, and heating of kinetic plasma[J]. Physics of Plasmas, 2017, 24:072306.
    [39]
    PARASHAR T N, MATTHAEUS W H. Propinquity of current and vortex structures:effects on collisionless plasma heating[J]. The Astrophysical Journal, 2016, 832:57.
    [40]
    BURLAGA L F, NORMAN F N. Macro-and micro-structure of the interplanetary magnetic field[J]. Canadian Journal of Physics, 1968, 46(10):S962-S965.
    [41]
    TSURUTANI B T, SMITH E J. Interplanetary discontinuities:Temporal variations and the radial gradient from 1 to 8.5 AU[J]. Journal of Geophysical Research:Space Physics, 1979, 84(A6):2773-2787.
    [42]
    GRECO A, CHUYCHAI P, MATTHAEUS W H, et al. Intermittent MHD structures and classical discontinuities[J]. Geophysical Research Letters, 2008, 35:L19111. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025295383/
    [43]
    BRUNO R, CARBONE V, VELTRI P, et al. Identifying intermittency events in the solar wind[J]. Planetary and Space Science, 2001, 49(12):1201-1210.
    [44]
    MATTHAEUS W H, GOLDSTEIN M L. Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind[J]. Journal of Geophysical Research:Space Physics, 1982, 87(A8):6011-6028. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/JA087iA08p06011
    [45]
    MVLLER W C, GRAPPIN R. Spectral energy dynamics in magnetohydrodynamic turbulence[J]. Physical Review Letters, 2005, 95(11):114502. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_physics%2f0509019
    [46]
    BELCHER J W, DAVIS L. Large-amplitude Alfvén waves in the interplanetary medium, 2[J]. Journal of Geophysical Research, 1971, 76(16):3534-3563.
    [47]
    IROSHNIKOV P. Turbulence of a conducting fluid in a strong magnetic field[J]. Soviet Astronomy, 1964, 7:566.
    [48]
    KRAICHNAN R H. Inertial-range spectrum of hydromagnetic turbulence[J]. Physics of Fluids, 1965, 8(7):1385-1387.
    [49]
    TU C Y. The damping of interplanetary Alfvénic fluctuations and the heating of the solar wind[J]. Journal of Geophysical Research:Space Physics, 1988, 93(A1):7-20.
    [50]
    MATTHAEUS W H, ZHOU Y. Extended inertial range phenomenology of magnetohydrodynamic turbulence[J]. Physics of Fluids B:Plasma Physics, 1989, 1(9):1929-1931.
    [51]
    MONIN A S, YAGLOM A M. Statistical fluid mechanics:mechanics of turbulence, volume 2[M]. Cambridge, MA:MIT Press, 1975.
    [52]
    POLITANO H, POUQUET A. Von Kármán-Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions[J]. Physics Review E, 1998, 57:R21-R24.
    [53]
    SORRISO-VALVO L, MARINO R, CARBONE V, et al. Observation of inertial energy cascade in interplanetary space plasma[J]. Physical Review Letters, 2007, 99(11):115001.
    [54]
    COBURN J T, FORMAN M A, SMITH C W, et al. Third-moment descriptions of the interplanetary turbulent cascade, intermittency and back transfer[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2015, 373(2041):20140150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1933793b5bcd8e5db5c4745fe549abb
    [55]
    BANDYOPADHYAY R, CHASAPIS A, CHHIBER R, et al. Solar wind turbulence studies using MMS fast plasma investigation data[J]. The Astrophysical Journal, 2018, 866(2):81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9456404
    [56]
    SORRISO-VALVO L, CARBONE V, NOULLEZ A, et al. Analysis of cancellation in two-dimensional magnetohydrodynamic turbulence[J]. Physics of Plasmas, 2002, 9(1):89-95. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_nlin%2f0111053
    [57]
    YANG Y, WAN M P, MATTHAEUS W H, et al. Scale dependence of energy transfer in turbulent plasma[J]. Monthly Notices of the Royal Astronomical Society, 2019, 482:4933-4940.
    [58]
    EYINK G L. Locality of turbulent cascades[J]. Physica D:Nonlinear Phenomena, 2005, 207(1-2):91-116.
    [59]
    KRAICHNAN R H. Inertial-range transfer in two-and three-dimensional turbulence[J]. Journal of Fluid Mechanics, 1971, 47(3):525-535. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe33e7e4143e9b2dc82935871667584f
    [60]
    OHKITANI K, KIDA S. Triad interactions in a forced turbulence[J]. Physics of Fluids A:Fluid Dynamics, 1992, 4(4):794-802.
    [61]
    ZHOU Y. Degrees of locality of energy transfer in the inertial range[J]. Physics of Fluids A:Fluid Dynamics, 1993, 5(5):1092-1094.
    [62]
    DOMARADZKI J A, CARATI D. An analysis of the energy transfer and the locality of nonlinear interactions in turbulence[J]. Physics of Fluids, 2007, 19(8):085112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d26e98f829537fdd230458103874ebc
    [63]
    EYINK G L, ALUIE H. Localness of energy cascade in hydrodynamic turbulence[J]. Physics of Fluids, 2009, 21(11):115107. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0909.2451
    [64]
    VERMA M K, AYYER A, CHANDRA A V. Energy transfers and locality in magnetohydrodynamic turbulence[J]. Physics of Plasmas, 2005, 12(8):082307. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_nlin%2f0308005
    [65]
    ALEXAKIS A, MININNI P D, POUQUET A. Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence[J]. Physical Review E, 2005, 72(4):046301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe733b3bc060ce2108e5637345952e87
    [66]
    MININNI P D. Scale interactions in magnetohydrodynamic turbulence[J]. Annual Review of Fluid Mechanics, 2011, 43:377-397. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1006.1817
    [67]
    ALUIE H, EYINK G L. Scale locality of magnetohydrodynamic turbulence[J]. Physical Review Letters, 2010, 104(8):081101. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0912.3752
    [68]
    GERMANO M. Turbulence:the filtering approach[J]. Journal of Fluid Mechanics, 1992, 238:325-336. http://d.old.wanfangdata.com.cn/Periodical/zghygc-e201703012
    [69]
    CHEN S Y, ECKE R E, EYINK G L, et al. Physical mechanism of the two-dimensional inverse energy cascade[J]. Physical Review Letters, 2006, 96(8):084502.
    [70]
    WANG J C, YANG Y T, SHI Y P, et al. Cascade of kinetic energy in three-dimensional compressible turbulence[J]. Physical Review Letters, 2013, 110:214505. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1107.5771
    [71]
    YANG Y, MATTHAEUS W H, SHI Y P, et al. Compressibility effect on coherent structures, energy transfer, and scaling in magnetohydrodynamic turbulence[J]. Physics of Fluids, 2017, 29:035105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2b71d593d61f6c87df79e4ce2cd69f8b
    [72]
    CAMPOREALE E, SORRISO-VALVO L, CALIFANO F, et al.Coherent structures and spectral energy transfer in turbulent plasma:a space-filter approach[J]. Physical Review Letters, 2018, 120(12):125101.
    [73]
    YANG Y. Energy transfer and dissipation in plasma turbulence:from compressible MHD to collisionless plasma[M]. Singapore:Springer Singapore, 2019.
    [74]
    WAN M P, MATTHAEUS W H, ROYTERSHTEYN V, et al. Intermittency, coherent structures and dissipation in plasma turbulence[J]. Physics of Plasmas, 2016, 23:042307.
    [75]
    LAMRIBEN C, CORTET P P, MOISY F. Direct measurements of anisotropic energy transfers in a rotating turbulence experiment[J]. Physical Review Letters, 2011, 107(2):024503 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1106.4683
    [76]
    HORBURY T S, WICKS R T, CHEN C H K. Anisotropy in space plasma turbulence:solar wind observations[J]. Space Science Reviews, 2012, 172:325-342. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1109.6877
    [77]
    OUGHTON S, MATTHAEUS W H, WAN M P, et al. Anisotropy in solar wind plasma turbulence[J]. Philosophical Transaction of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2015, 373(2041):20140152. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1002.2096
    [78]
    KIYANI K H, CHAPMAN S C, SAHRAOUI F, et al. Enhanced magnetic compressibility and isotropic scale invariance at sub-ion Larmor scales in solar wind turbulence[J]. The Astrophysical Journal, 2012, 763(1):10. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1008.0525
    [79]
    LUO Q Y, WU D J. Observations of anisotropic scaling of solar wind turbulence[J]. The Astrophysical Journal Letters, 2010, 714(1):L138.
    [80]
    SHEBALIN J V, MATTHAUES W H, MONTGOMERY D C. Anisotropy in MHD turbulence due to a mean magnetic field[J]. Journal of Plasma Physics, 1983, 29(3):525-547. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022377896005260
    [81]
    ZHOU Y, MATTHAEUS W H, DMITRUK P. Colloquium:Magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas[J]. Reviews of Modern Physics, 2004, 76(4):1015. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231427741/
    [82]
    CHO J, VISHNIAC E T. The anisotropy of magnetohydrodynamic Alfvénic turbulence[J]. The Astrophysical Journal, 2000, 539(1):273.
    [83]
    CHEN C H K, MALLET A, SCHEKOCHIHIN A A, et al. Three-dimensional structure of solar wind turbulence[J]. The Astrophysical Journal, 2012, 758(2):120. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1109.2558
    [84]
    CHEN C H K, MALLET A, YOUSEF T A, et al. Anisotropy of Alfvénic turbulence in the solar wind and numerical simulations[J]. Monthly Notices of the Royal Astronomical Society, 2011, 415(4):3219-3226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-2966.2011.18933.x
    [85]
    BERESNYAK A. Basic properties of magnetohydrodynamic turbulence in inertial range[J]. Monthly Notices of the Royal Astronomical Society, 2012, 422(4):3495-3502. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-2966.2012.20859.x
    [86]
    VERDINI A, GRAPPIN R, HELLINGER P, et al. Anisotropy of third-order structure functions in MHD turbulence[J]. The Astrophysical Journal, 2015, 804(2):119.
    [87]
    WANG J C, SHI Y P, WANG L P, et al. Scaling and statistics in three-dimensional compressible turbulence[J]. Physical Review Letters, 2012, 108:214505. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0706.0739
    [88]
    MYONG R S, ROE P L. Shock waves and rarefaction waves in magnetohydrodynamics. Part 2. The MHD system[J]. Jourmal of Plasma Physics, 1997, 58(3):521-552.
    [89]
    胡文瑞.宇宙磁流体力学[M].北京:科学出版社, 1987.
    [90]
    YANG Y, SHI Y P, WAN M P, et al. Energy cascade and its locality in compressible magnetohydrodynamic turbulence[J]. Physical Review E, 2016, 93:061102(R). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c453776f912cc04b7415f4d1a923f128
    [91]
    CELANI A, LANOTTE A, MAZZINO A, et al. Fronts in passive scalar turbulence[J]. Physics of Fluids, 2001, 13(6):1768-1783.
    [92]
    BENZI R, BIFERALE L, FISHER R T, et al. Intermittency and universality in fully developed inviscid and weakly compressible turbulent flows[J]. Physical Review Letters, 2008, 100(23):234503.
    [93]
    VOROBEV A, ZIKANOV O, DAVIDSON P A, et al. Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number[J]. Physics of Fluids, 2005, 17:125105.
    [94]
    ZHAI X M, YEUNG P K. Evolution of anisotropy in direct numerical simulations of MHD turbulence in a strong magnetic field on elongated periodic domains[J]. Physical Review Fluids, 2018, 3:084602.
    [95]
    BURATTINI P, KINET M, CARATI D, et al. Anisotropy of velocity spectra in quasistatic magnetohydrodynamic turbulence[J]. Physics of Fluids, 2008, 20:065110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b8004d9d9c06bba7f963d28130f12cf8
    [96]
    BAKER N T, POTHERAT A, DAVOUST L, et al, Inverse and direct cascades in three-dimensional magnetohydrodynamic turbulence at low magnetic Reynolds number[J]. Physical Review Letters, 2018, 120:224502. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=127dedea5c8b6efb2aaf32ba4b54faf9
    [97]
    KNAEPEN B, MOREAU R. Magnetohydrodynamic turbulence at low magnetic Reynolds number[J]. Annual Review of Fluid Mechanics, 2008, 40:25-45. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232822574/
  • Related Articles

    [1]ZHAO Zehao, ZHANG Jinlong, DONG Yuhong. Heat transfer models for porous media in porous-walled turbulent flows[J]. ACTA AERODYNAMICA SINICA, 2024, 42(1): 45-54. DOI: 10.7638/kqdlxxb-2023.0084
    [2]CHENG Xueling. Development of wind energy model and application of CFD in wind energy assessment[J]. ACTA AERODYNAMICA SINICA, 2023, 41(6): 1-15. DOI: 10.7638/kqdlxxb-2023.0011
    [3]KE Shitang, LU Manman, WU Hongxin, GAO Muen, TIAN Wenxin, WANG Hao, WANG Shuo. Experimental study on the post-flutter morphological chracteristics and energy dissipation of a 15 MW wind turbine blade[J]. ACTA AERODYNAMICA SINICA, 2022, 40(4): 169-180. DOI: 10.7638/kqdlxxb-2021.0417
    [4]CHEN Shiyi, WANG Jianchun, ZHENG Qinmin, WANG Xiaoning, TENG Jian, WAN Minping. Multi-scale analyses of compressible turbulence[J]. ACTA AERODYNAMICA SINICA, 2021, 39(1): 1-17. DOI: 10.7638/kqdlxxb-2020.0159
    [5]LIU Lei, GUAN Qinghai, LI Jiawu, LIU Jianxin. Study on flutter mechanism and identification of flutter derivatives based on energy equivalence[J]. ACTA AERODYNAMICA SINICA, 2020, 38(2): 224-231. DOI: 10.7638/kqdlxxb-2018.0118
    [6]LIU Zujun, YANG Yongxin, ZHOU Bingling. The pneumatic energy analysis of typical bridge section wind induced vibration[J]. ACTA AERODYNAMICA SINICA, 2014, 32(1): 123-130. DOI: 10.7638/kqdlxxb-2012.0047
    [7]TENG Hong-hui, LIU Yun-feng, JIANG Zong-lin. Energy release law of one-dimension pulse detonation wave[J]. ACTA AERODYNAMICA SINICA, 2012, 30(6): 731-736.
    [8]Wei Qi, Xia Guo-quan. Modeling indoor air flow and heat transfer with turbulent heat transfer model[J]. ACTA AERODYNAMICA SINICA, 2005, 23(2): 157-161.
    [9]Construction and examination of the total energy conservation[J]. ACTA AERODYNAMICA SINICA, 2002, 20(4): 416-421.
    [10]Simulations for flow structures in city canyon with k-ε turbulence energy closure scheme[J]. ACTA AERODYNAMICA SINICA, 2001, 19(3): 296-301.

Catalog

    Article views (278) PDF downloads (230) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return