Citation: | GUI Mingyue, ZHANG Leiying, CUI Hao, ZHANG Hui. Turbulent combustion related with detoantion[J]. ACTA AERODYNAMICA SINICA, 2020, 38(3): 515-531. DOI: 10.7638/kqdlxxb-2020.0066 |
[1] |
WOLAŃSKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158. https://doi.org/10.1016/j.proci.2012.10.005
|
[2] |
LU F K. Progress and challenges in the development of detonation engines for propulsion and power production[J]. Applied Mechanics and Materials, 2016, 819:3-10. https://doi.org/10.4028/www.scientific.net/amm.819.3
|
[3] |
LEE J H S. The detonation phenomena[M]. Cambridge University Press, 2008. ISBN-13: 978-0521897235 ISBN-10: 0521897238
|
[4] |
HE L T, CLAVIN P. On the direct initiation of gaseous detonations by an energy source[J]. Journal of Fluid Mechanics, 1994, 277:227-248. https://doi.org/10.1017/s0022112094002740
|
[5] |
范宝春.极度燃烧[M].北京:国防工业出版社, 2018.
FAN B C. Extremecombustion[M]. Beijing:National Defense Industry Press, 2018. (in Chinese)
|
[6] |
RADULESCU M I, SHARPE G J, LAW C K, et al. The hydrodynamic structure of unstable cellular detonations[J]. Journal of Fluid Mechanics, 2007, 580:31-81. https://doi.org/10.1017/s0022112007005046
|
[7] |
CICCARELLI G, DOROFEEV S. Flame acceleration and transition to detonation inducts[J]. Progress in Energy and Combustion Science, 2008, 34(4):499-550. https://doi.org/10.1016/j.pecs.2007.11.002
|
[8] |
Urtiew P A, Oppenheim A K. Experimental observations of the transition to detonation in an explosive gas[J]. Proceedings of the Royal Society of London Series A, 1966, 295:13-28. https://doi.org/10.1098/rspa.1966.0223
|
[9] |
KUZNETSOV M, ALEKSEEV V, MATSUKOV I, et al. DDT in a smooth tube filled with a hydrogen-oxygen mixture[J]. Shock Waves, 2005, 14(3):205-215. https://doi.org/10.1007/s00193-005-0265-6
|
[10] |
LIBERMAN M A, KUZNETSOV M, IVANOV A, et al. Formation of the preheated zone ahead of a propagating flame and the mechanism underlying the deflagration-to-detonation transition[J]. Physics Letters A, 2009, 373(5):501-510. https://doi.org/10.1016/j.physleta.2008.12.008
|
[11] |
LIBERMAN M A, IVANOV M F, KIVERIN A D, et al. Deflagration-to-detonation transition in highly reactive combustible mixtures[J]. Acta Astronautica, 2010, 67(7/8):688-701. https://doi.org/10.1016/j.actaastro.2010.05.024
|
[12] |
FAN B C, YING Z F, CHEN Z H, et al. Observations of flame behavior during flame-obstacleinteraction[J]. Process Safety Progress, 2008, 27(1):66-71. https://doi.org/10.1002/prs.10223
|
[13] |
CICCARELLI G, JOHANSEN C, HICKEY M C. Flame acceleration enhancement by distributed ignitionpoints[J]. Journal of Propulsion and Power, 2005, 21(6):1029-1034. https://doi.org/10.2514/1.14425
|
[14] |
GOODWIN G B, HOUIM R W, ORAN E S. Shock transition to detonation in channels with obstacles[J]. Proceedings of the Combustion Institute, 2017, 36(2):2717-2724. https://doi.org/10.1016/j.proci.2016.06.160
|
[15] |
ZIPF R K, GAMEZO V N, MOHAMED K M, et al. Deflagration-to-detonation transition in natural gas-air mixtures[J]. Combustion and Flame, 2014, 161(8):2165-2176. https://doi.org/10.1016/j.combustflame.2014.02.002
|
[16] |
IVANOV M F, KIVERIN A D, YAKOVENKO I S, et al. Hydrogen-oxygen flame acceleration and deflagration-to-detonation transition in three-dimensional rectangular channels with no-slip walls[J]. International Journal of Hydrogen Energy, 2013, 38(36):16427-16440. https://doi.org/10.1016/j.ijhydene.2013.08.124
|
[17] |
KUZNETSOV M, LIBERMAN M, MATSUKOV I. Experimental study of the preheat zone formation and deflagration to detonationtransition[J]. Combustion Science and Technology, 2010, 182(11/12):1628-1644. https://doi.org/10.1080/00102202.2010.497327
|
[18] |
POLUDNENKO A Y, GARDINER T A, ORAN E S. Spontaneous transition of turbulent flames to detonations in unconfined media[J]. Physical Review Letters, 2011, 107(5):054501. https://doi.org/10.1103/physrevlett.107.054501
|
[19] |
POLUDNENKO A Y, CHAMBERS J, AHMED K, et al. A unified mechanism for unconfined deflagration-to-detonation transition in terrestrial chemical syste ms and type Ia supernovae[J]. Science, 2019, 366(6465):eaau7365. https://doi.org/10.1126/science.aau7365
|
[20] |
GAMEZO V N, OGAWA T, ORAN E S. Flame acceleration and DDT in channels with obstacles:Effect of obstacle spacing[J]. Combustion and Flame, 2008, 155(1/2):302-315. https://doi.org/10.1016/j.combustflame.2008.06.004
|
[21] |
GOODWIN G B, HOUIM R W, ORAN E S. Effect of decreasing blockage ratio on DDT in small channels with obstacles[J]. Combustion and Flame, 2016, 173:16-26. https://doi.org/10.1016/j.combustflame.2016.07.029
|
[22] |
GOODWIN G B, ORAN E S. Premixed flame stability and transition to detonation in a supersonic combustor[J]. Combustion and Flame, 2018, 197:145-160. https://doi.org/10.1016/j.combustflame.2018.07.008
|
[23] |
EMAMI S, MAZAHERI K, SHAMOONI A, et al. LES of flame acceleration and DDT in hydrogen-air mixture using artificially thickened flame approach and detailed chemical kinetics[J]. International Journal of Hydrogen Energy, 2015, 40(23):7395-7408. https://doi.org/10.1016/j.ijhydene.2015.03.165
|
[24] |
VAAGSAETHER K, KNUDSEN V, BJERKETVEDT D. Simulation of flame acceleration and DDT in H2-air mixture with a flux limiter centered method[J]. International Journal of Hydrogen Energy, 2007, 32(13):2186-2191. https://doi.org/10.1016/j.ijhydene.2007.04.006
|
[25] |
ELLZEY J L, HENNEKE M R, PICONE J M, et al. The interaction of a shock with a vortex:Shock distortion and the production of acoustic waves[J]. Physics of Fluids, 1995, 7(1):172-184. https://doi.org/10.1063/1.868738
|
[26] |
CICCARELLI G, JOHANSEN C T, PARRAVANI M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel[J]. Combustion and Flame, 2010, 157(11):2125-2136. https://doi.org/10.1016/j.combustflame.2010.05.003
|
[27] |
Peters N. Turbulent combustion[M]//Cambridge Monographs on Mechanics. Cambridge University Press, 2001. ISBN-13: 978-0521660822 ISBN-10: 0521660823
|
[28] |
PITSCH H, de LAGENESTE L D. Large-eddy simulation of premixed turbulent combustion using a level-set approach[J]. Proceedings of the Combustion Institute, 2002, 29(2):2001-2008. https://doi.org/10.1016/S1540-7489(02)80244-9
|
[29] |
BANG B H, AHN C S, KIM Y T, et al. Deflagration-to-detonation transition in pipes:The analytical theory[J]. Applied Mathematical Modelling, 2019, 66:332-343. https://doi.org/10.1016/j.apm.2018.09.023
|
[30] |
HAN W H, GAO Y, LAW C K. Flame acceleration and deflagration-to-detonation transition in micro- and macro-channels:an integrated mechanistic study[J]. Combustion and Flame, 2017, 176:285-298. https://doi.org/10.1016/j.combustflame.2016.10.010
|
[31] |
COATES A M, MATHIAS D L, CANTWELL B J. Numerical investigation of the effect of obstacle shape on deflagration to detonation transition in a hydrogen-air mixture[J]. Combustion and Flame, 2019, 209:278-290. https://doi.org/10.1016/j.combustflame.2019.07.044
|
[32] |
OGAWA T, GAMEZO V N, ORAN E S. Flame acceleration and transition to detonation in an array of square obstacles[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2):355-362. https://doi.org/10.1016/j.jlp.2011.12.009
|
[33] |
VALIEV D, BYCHKOV V, AKKERMAN V, et al. Flame acceleration in channels with obstacles in the deflagration-to-detonationtransition[J]. Combustion and Flame, 2010, 157(5):1012-1021. https://doi.org/10.1016/j.combustflame.2009.12.021
|
[34] |
BYCHKOV V, AKKERMAN V, FRU G, et al. Flame acceleration in the early stages of burning intubes[J]. Combustion and Flame, 2007, 150(4):263-276. https://doi.org/10.1016/j.combustflame.2007.01.004
|
[35] |
SAIF M, WANG W T, PEKALSKI A, et al. Chapman-Jouguet deflagrations and their transition to detonation[J]. Proceedings of the Combustion Institute, 2017, 36(2):2771-2779. https://doi.org/10.1016/j.proci.2016.07.122
|
[36] |
KESSLER D A, GAMEZO V N, ORAN E S. Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air syste ms[J]. Combustion and Flame, 2010, 157(11):2063-2077. https://doi.org/10.1016/j.combustflame.2010.04.011
|
[37] |
FICKETT W, DAVIS W C. Detonation: theory and experiment[M]. New York: Dover Publication, 2000. ISBN-10: 0486414566 ISBN-13: 978-0486414560
|
[38] |
LEE JH S. Dynamic parameters of gaseous detonations[J]. Annual Review of Fluid Mechanics, 1984, 16:311-336. https://doi.org/10.1146/annurev.fl.16.010184.001523
|
[39] |
AUSTIN J M. The role of instability in gaseous detonation[D]. Caliofornia: California Institute of Technology, 2003.
|
[40] |
NG H D. The effect of chemical reaction kinetics on the structure of gaseous detonations[D]. Montreal: McGill University, 2005.
|
[41] |
JACKSON S I, SHORT M. The influence of the cellular instability on lead shock evolution in weakly unstable detonation[J]. Combustion and Flame, 2013, 160(10):2260-2274. https://doi.org/10.1016/j.combustflame.2013.04.028
|
[42] |
SHEPHERD J E. Detonation in gases[J]. Proceedings of the Combustion Institute, 2009, 32(1):83-98. https://doi.org/10.1016/j.proci.2008.08.006
|
[43] |
RADULESCU M I, SHARPE G J, LEE J H S, et al. The ignition mechanism in irregular structure gaseous detonations[J]. Proceedings of the Combustion Institute, 2005, 30(2):1859-1867. https://doi.org/10.1016/j.proci.2004.08.047
|
[44] |
MASSA L, AUSTIN J M, JACKSON T L. Triple-point shear layers in gaseous detonationwaves[J]. Journal of Fluid Mechanics, 2007, 586:205-248. https://doi.org/10.1017/s0022112007007008
|
[45] |
RADULESCU M I, LEE J H S. The failure mechanism of gaseous detonations:experiments in porous wall tubes[J]. Combustion and Flame, 2002, 131(1/2):29-46. https://doi.org/10.1016/s0010-2180(02)00390-5
|
[46] |
MAZAHERI K, MAHMOUDI Y, SABZPOOSHANI M, et al. Experimental and numerical investigation of propagation mechanism of gaseous detonations in channels with porous walls[J]. Combustion and Flame, 2015, 162(6):2638-2659. https://doi.org/10.1016/j.combustflame.2015.03.015
|
[47] |
RADULESCU M I. A detonation paradox:Why inviscid detonation simulations predict the incorrect trend for the role of instability in gaseous cellular detonations?[J]. Combustion and Flame, 2018, 195:151-162. https://doi.org/10.1016/j.combustflame.2018.05.002
|
[48] |
MAZAHERI K, MAHMOUDI Y, RADULESCU M I. Diffusion and hydrodynamic instabilities in gaseous detonations[J]. Combustion and Flame, 2012, 159(6):2138-2154. https://doi.org/10.1016/j.combustflame.2012.01.024
|
[49] |
MAHMOUDI Y, KARIMI N, DEITERDING R, et al.Hydrodynamic instabilities in gaseous detonations:comparison of Euler, Navier-Stokes, and Large-Eddy simulation[J]. Journal of Propulsion and Power, 2014, 30(2):384-396. https://doi.org/10.2514/1.b34986
|
[50] |
BHATTACHARJEE RR, LAU-CHAPDELAINE S S M, MAINES G, et al. Detonation re-initiation mechanism following the Mach reflection of a quenched detonation[J]. Proceedings of the Combustion Institute, 2013, 34(2):1893-1901. https://doi.org/10.1016/j.proci.2012.07.063
|
[51] |
KUO KK, ACHARYA R. Fundamentals of turbulent and multiphase combustion[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. https://doi.org/10.1002/9781118107683
|
[52] |
GONZALEZ-JUEZ E D, KERSTEIN A R, RANJAN R, et al. Advances and challenges in modeling high-speed turbulent combustion in propulsion syste ms[J]. Progress in Energy and Combustion Science, 2017, 60:26-67. https://doi.org/10.1016/j.pecs.2016.12.003
|
[53] |
ZBIKOWSKI M, MAKAROV D, MOLKOV V. LES model of large scale hydrogen-air planar detonations:Verification by the ZND theory[J]. International Journal of Hydrogen Energy, 2008, 33(18):4884-4892. https://doi.org/10.1016/j.ijhydene.2008.05.071
|
[54] |
ZBIKOWSKI M, MAKAROV D, MOLKOV V. Numerical simulations of large-scale detonation tests in the RUT facility by the LESmodel[J]. Journal of Hazardous Materials, 2010, 181(1/2/3):949-956. https://doi.org/10.1016/j.jhazmat.2010.05.105
|
[55] |
RIKANATI A, SADOT O, BEN-DOR G, et al. Shock-wave Mach-reflection slip-stream instability:a secondary small-scale turbulent mixingphenomenon[J]. Physical Review Letters, 2006, 96(17):174503. https://doi.org/10.1103/physrevlett.96.174503
|
[56] |
MAXWELL B M, FALLE S A E G, SHARPE G, et al. A compressible-LEM turbulent combustion subgrid model for assessing gaseous explosion hazards[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:460-470. https://doi.org/10.1016/j.jlp.2015.01.014
|
[57] |
MAXWELL B M, BHATTACHARJEE R R, LAU-CHAPDELAINE S S M, et al. Influence of turbulent fluctuations on detonation propagation[J]. Journal of Fluid Mechanics, 2017, 818:646-696. https://doi.org/10.1017/jfm.2017.145
|
[58] |
MAXWELL B, PEKALSKI A, RADULESCU M. Modelling of the transition of a turbulent shock-flame complex to detonation using the linear eddy model[J]. Combustion and Flame, 2018, 192:340-357. https://doi.org/10.1016/j.combustflame.2018.02.013
|
[59] |
KIYANDA C B. Photographic study of the structure of irregular detonation waves[D]. Montreal: McGill University, 2005.
|
[60] |
KERSTEIN A R. Linear-eddy modeling of turbulent transport. Ⅱ:Application to shear layer mixing[J]. Combustion and Flame, 1989, 75(3/4):397-413. https://doi.org/10.1016/0010-2180(89)90051-5
|
[61] |
CHAKRAVARTHY V K, MENON S. Subgrid Modeling of Turbulent Premixed Flames in the Flamelet Regime[J]. Flow, Turbulence and Combustion, 2000, 65:133-161. https://doi.org/10.1023/A:1011456218761
|
[62] |
CHAKRAVARTHY V K, MENON S. Linear eddysimulations of Reynolds number and Schmidt number effects on turbulent scalar mixing[J]. Physics of Fluids, 2001, 13(2):488-499. https://doi.org/10.1063/1.1335540
|
[63] |
SANKARAN V, MENON S. LES of scalar mixing in supersonic mixinglayers[J]. Proceedings of the Combustion Institute, 2005, 30(2):2835-2842. https://doi.org/10.1016/j.proci.2004.08.027
|
[64] |
WOOSLEY S E, KERSTEIN A R, SANKARAN V, et al. Type Ia Supernovae:calculations of turbulent flames using the linear eddy model[J]. The Astrophysical Journal, 2009, 704(1):255-273. https://doi.org/10.1088/0004-637x/704/1/255
|
[65] |
KIYANDA C B, HIGGINS A J. Photographic investigation into the mechanism of combustion in irregular detonationwaves[J]. Shock Waves, 2013, 23(2):115-130. https://doi.org/10.1007/s00193-012-0413-8
|
[66] |
ABDEL-GAYED R G, AL-KHISHALI K J, BRADLEY D. Turbulent burning velocities and flame straining in explosions[J]. Proceedings of the Royal Society A, 1984, 391:393-414. https://doi.org/10.1098/rspa.1984.0019
|