GUI Mingyue, ZHANG Leiying, CUI Hao, ZHANG Hui. Turbulent combustion related with detoantion[J]. ACTA AERODYNAMICA SINICA, 2020, 38(3): 515-531. DOI: 10.7638/kqdlxxb-2020.0066
Citation: GUI Mingyue, ZHANG Leiying, CUI Hao, ZHANG Hui. Turbulent combustion related with detoantion[J]. ACTA AERODYNAMICA SINICA, 2020, 38(3): 515-531. DOI: 10.7638/kqdlxxb-2020.0066

Turbulent combustion related with detoantion

More Information
  • Received Date: April 06, 2020
  • Revised Date: April 29, 2020
  • Available Online: January 07, 2021
  • Due to high energy release rate, the applications of detonation in propulsion syste ms have aroused strong interest. There are two important phenomena related with detonation:detonation initiation and propagation. Categorically, a detonation wave can be initiated either directly, through a rapid deposition of energy, or indirectly. In direct detonation initiation, there are higher energy. Indirect detonation initiation is always research hotspots, in which deflagration-to-detonation transition (DDT) is the focus. After decades of experimental, theoretical and numerical research, the DDT mechanis ms have been understood. However, it is unable to achieve accurate prediction, in which the main challenge is turbulent combustion. According to detonation propagation, especially for the combustible mixture with high activation energy, there are the turbulent nature of the reaction zone in detonation wave structure and the presence of unburnt gas pockets that are convected downstream into the wake of the detonation front. This behavior makes the accurate control of detonation wave difficult. But, the average velocity of detonation can be predicted by the CJ theory velocity. In this paper, the recent developments in the DDT and detonation wave structure are reviewed, and the future research is prospected.
  • [1]
    WOLAŃSKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158. https://doi.org/10.1016/j.proci.2012.10.005
    [2]
    LU F K. Progress and challenges in the development of detonation engines for propulsion and power production[J]. Applied Mechanics and Materials, 2016, 819:3-10. https://doi.org/10.4028/www.scientific.net/amm.819.3
    [3]
    LEE J H S. The detonation phenomena[M]. Cambridge University Press, 2008. ISBN-13: 978-0521897235 ISBN-10: 0521897238
    [4]
    HE L T, CLAVIN P. On the direct initiation of gaseous detonations by an energy source[J]. Journal of Fluid Mechanics, 1994, 277:227-248. https://doi.org/10.1017/s0022112094002740
    [5]
    范宝春.极度燃烧[M].北京:国防工业出版社, 2018.

    FAN B C. Extremecombustion[M]. Beijing:National Defense Industry Press, 2018. (in Chinese)
    [6]
    RADULESCU M I, SHARPE G J, LAW C K, et al. The hydrodynamic structure of unstable cellular detonations[J]. Journal of Fluid Mechanics, 2007, 580:31-81. https://doi.org/10.1017/s0022112007005046
    [7]
    CICCARELLI G, DOROFEEV S. Flame acceleration and transition to detonation inducts[J]. Progress in Energy and Combustion Science, 2008, 34(4):499-550. https://doi.org/10.1016/j.pecs.2007.11.002
    [8]
    Urtiew P A, Oppenheim A K. Experimental observations of the transition to detonation in an explosive gas[J]. Proceedings of the Royal Society of London Series A, 1966, 295:13-28. https://doi.org/10.1098/rspa.1966.0223
    [9]
    KUZNETSOV M, ALEKSEEV V, MATSUKOV I, et al. DDT in a smooth tube filled with a hydrogen-oxygen mixture[J]. Shock Waves, 2005, 14(3):205-215. https://doi.org/10.1007/s00193-005-0265-6
    [10]
    LIBERMAN M A, KUZNETSOV M, IVANOV A, et al. Formation of the preheated zone ahead of a propagating flame and the mechanism underlying the deflagration-to-detonation transition[J]. Physics Letters A, 2009, 373(5):501-510. https://doi.org/10.1016/j.physleta.2008.12.008
    [11]
    LIBERMAN M A, IVANOV M F, KIVERIN A D, et al. Deflagration-to-detonation transition in highly reactive combustible mixtures[J]. Acta Astronautica, 2010, 67(7/8):688-701. https://doi.org/10.1016/j.actaastro.2010.05.024
    [12]
    FAN B C, YING Z F, CHEN Z H, et al. Observations of flame behavior during flame-obstacleinteraction[J]. Process Safety Progress, 2008, 27(1):66-71. https://doi.org/10.1002/prs.10223
    [13]
    CICCARELLI G, JOHANSEN C, HICKEY M C. Flame acceleration enhancement by distributed ignitionpoints[J]. Journal of Propulsion and Power, 2005, 21(6):1029-1034. https://doi.org/10.2514/1.14425
    [14]
    GOODWIN G B, HOUIM R W, ORAN E S. Shock transition to detonation in channels with obstacles[J]. Proceedings of the Combustion Institute, 2017, 36(2):2717-2724. https://doi.org/10.1016/j.proci.2016.06.160
    [15]
    ZIPF R K, GAMEZO V N, MOHAMED K M, et al. Deflagration-to-detonation transition in natural gas-air mixtures[J]. Combustion and Flame, 2014, 161(8):2165-2176. https://doi.org/10.1016/j.combustflame.2014.02.002
    [16]
    IVANOV M F, KIVERIN A D, YAKOVENKO I S, et al. Hydrogen-oxygen flame acceleration and deflagration-to-detonation transition in three-dimensional rectangular channels with no-slip walls[J]. International Journal of Hydrogen Energy, 2013, 38(36):16427-16440. https://doi.org/10.1016/j.ijhydene.2013.08.124
    [17]
    KUZNETSOV M, LIBERMAN M, MATSUKOV I. Experimental study of the preheat zone formation and deflagration to detonationtransition[J]. Combustion Science and Technology, 2010, 182(11/12):1628-1644. https://doi.org/10.1080/00102202.2010.497327
    [18]
    POLUDNENKO A Y, GARDINER T A, ORAN E S. Spontaneous transition of turbulent flames to detonations in unconfined media[J]. Physical Review Letters, 2011, 107(5):054501. https://doi.org/10.1103/physrevlett.107.054501
    [19]
    POLUDNENKO A Y, CHAMBERS J, AHMED K, et al. A unified mechanism for unconfined deflagration-to-detonation transition in terrestrial chemical syste ms and type Ia supernovae[J]. Science, 2019, 366(6465):eaau7365. https://doi.org/10.1126/science.aau7365
    [20]
    GAMEZO V N, OGAWA T, ORAN E S. Flame acceleration and DDT in channels with obstacles:Effect of obstacle spacing[J]. Combustion and Flame, 2008, 155(1/2):302-315. https://doi.org/10.1016/j.combustflame.2008.06.004
    [21]
    GOODWIN G B, HOUIM R W, ORAN E S. Effect of decreasing blockage ratio on DDT in small channels with obstacles[J]. Combustion and Flame, 2016, 173:16-26. https://doi.org/10.1016/j.combustflame.2016.07.029
    [22]
    GOODWIN G B, ORAN E S. Premixed flame stability and transition to detonation in a supersonic combustor[J]. Combustion and Flame, 2018, 197:145-160. https://doi.org/10.1016/j.combustflame.2018.07.008
    [23]
    EMAMI S, MAZAHERI K, SHAMOONI A, et al. LES of flame acceleration and DDT in hydrogen-air mixture using artificially thickened flame approach and detailed chemical kinetics[J]. International Journal of Hydrogen Energy, 2015, 40(23):7395-7408. https://doi.org/10.1016/j.ijhydene.2015.03.165
    [24]
    VAAGSAETHER K, KNUDSEN V, BJERKETVEDT D. Simulation of flame acceleration and DDT in H2-air mixture with a flux limiter centered method[J]. International Journal of Hydrogen Energy, 2007, 32(13):2186-2191. https://doi.org/10.1016/j.ijhydene.2007.04.006
    [25]
    ELLZEY J L, HENNEKE M R, PICONE J M, et al. The interaction of a shock with a vortex:Shock distortion and the production of acoustic waves[J]. Physics of Fluids, 1995, 7(1):172-184. https://doi.org/10.1063/1.868738
    [26]
    CICCARELLI G, JOHANSEN C T, PARRAVANI M. The role of shock-flame interactions on flame acceleration in an obstacle laden channel[J]. Combustion and Flame, 2010, 157(11):2125-2136. https://doi.org/10.1016/j.combustflame.2010.05.003
    [27]
    Peters N. Turbulent combustion[M]//Cambridge Monographs on Mechanics. Cambridge University Press, 2001. ISBN-13: 978-0521660822 ISBN-10: 0521660823
    [28]
    PITSCH H, de LAGENESTE L D. Large-eddy simulation of premixed turbulent combustion using a level-set approach[J]. Proceedings of the Combustion Institute, 2002, 29(2):2001-2008. https://doi.org/10.1016/S1540-7489(02)80244-9
    [29]
    BANG B H, AHN C S, KIM Y T, et al. Deflagration-to-detonation transition in pipes:The analytical theory[J]. Applied Mathematical Modelling, 2019, 66:332-343. https://doi.org/10.1016/j.apm.2018.09.023
    [30]
    HAN W H, GAO Y, LAW C K. Flame acceleration and deflagration-to-detonation transition in micro- and macro-channels:an integrated mechanistic study[J]. Combustion and Flame, 2017, 176:285-298. https://doi.org/10.1016/j.combustflame.2016.10.010
    [31]
    COATES A M, MATHIAS D L, CANTWELL B J. Numerical investigation of the effect of obstacle shape on deflagration to detonation transition in a hydrogen-air mixture[J]. Combustion and Flame, 2019, 209:278-290. https://doi.org/10.1016/j.combustflame.2019.07.044
    [32]
    OGAWA T, GAMEZO V N, ORAN E S. Flame acceleration and transition to detonation in an array of square obstacles[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2):355-362. https://doi.org/10.1016/j.jlp.2011.12.009
    [33]
    VALIEV D, BYCHKOV V, AKKERMAN V, et al. Flame acceleration in channels with obstacles in the deflagration-to-detonationtransition[J]. Combustion and Flame, 2010, 157(5):1012-1021. https://doi.org/10.1016/j.combustflame.2009.12.021
    [34]
    BYCHKOV V, AKKERMAN V, FRU G, et al. Flame acceleration in the early stages of burning intubes[J]. Combustion and Flame, 2007, 150(4):263-276. https://doi.org/10.1016/j.combustflame.2007.01.004
    [35]
    SAIF M, WANG W T, PEKALSKI A, et al. Chapman-Jouguet deflagrations and their transition to detonation[J]. Proceedings of the Combustion Institute, 2017, 36(2):2771-2779. https://doi.org/10.1016/j.proci.2016.07.122
    [36]
    KESSLER D A, GAMEZO V N, ORAN E S. Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air syste ms[J]. Combustion and Flame, 2010, 157(11):2063-2077. https://doi.org/10.1016/j.combustflame.2010.04.011
    [37]
    FICKETT W, DAVIS W C. Detonation: theory and experiment[M]. New York: Dover Publication, 2000. ISBN-10: 0486414566 ISBN-13: 978-0486414560
    [38]
    LEE JH S. Dynamic parameters of gaseous detonations[J]. Annual Review of Fluid Mechanics, 1984, 16:311-336. https://doi.org/10.1146/annurev.fl.16.010184.001523
    [39]
    AUSTIN J M. The role of instability in gaseous detonation[D]. Caliofornia: California Institute of Technology, 2003.
    [40]
    NG H D. The effect of chemical reaction kinetics on the structure of gaseous detonations[D]. Montreal: McGill University, 2005.
    [41]
    JACKSON S I, SHORT M. The influence of the cellular instability on lead shock evolution in weakly unstable detonation[J]. Combustion and Flame, 2013, 160(10):2260-2274. https://doi.org/10.1016/j.combustflame.2013.04.028
    [42]
    SHEPHERD J E. Detonation in gases[J]. Proceedings of the Combustion Institute, 2009, 32(1):83-98. https://doi.org/10.1016/j.proci.2008.08.006
    [43]
    RADULESCU M I, SHARPE G J, LEE J H S, et al. The ignition mechanism in irregular structure gaseous detonations[J]. Proceedings of the Combustion Institute, 2005, 30(2):1859-1867. https://doi.org/10.1016/j.proci.2004.08.047
    [44]
    MASSA L, AUSTIN J M, JACKSON T L. Triple-point shear layers in gaseous detonationwaves[J]. Journal of Fluid Mechanics, 2007, 586:205-248. https://doi.org/10.1017/s0022112007007008
    [45]
    RADULESCU M I, LEE J H S. The failure mechanism of gaseous detonations:experiments in porous wall tubes[J]. Combustion and Flame, 2002, 131(1/2):29-46. https://doi.org/10.1016/s0010-2180(02)00390-5
    [46]
    MAZAHERI K, MAHMOUDI Y, SABZPOOSHANI M, et al. Experimental and numerical investigation of propagation mechanism of gaseous detonations in channels with porous walls[J]. Combustion and Flame, 2015, 162(6):2638-2659. https://doi.org/10.1016/j.combustflame.2015.03.015
    [47]
    RADULESCU M I. A detonation paradox:Why inviscid detonation simulations predict the incorrect trend for the role of instability in gaseous cellular detonations?[J]. Combustion and Flame, 2018, 195:151-162. https://doi.org/10.1016/j.combustflame.2018.05.002
    [48]
    MAZAHERI K, MAHMOUDI Y, RADULESCU M I. Diffusion and hydrodynamic instabilities in gaseous detonations[J]. Combustion and Flame, 2012, 159(6):2138-2154. https://doi.org/10.1016/j.combustflame.2012.01.024
    [49]
    MAHMOUDI Y, KARIMI N, DEITERDING R, et al.Hydrodynamic instabilities in gaseous detonations:comparison of Euler, Navier-Stokes, and Large-Eddy simulation[J]. Journal of Propulsion and Power, 2014, 30(2):384-396. https://doi.org/10.2514/1.b34986
    [50]
    BHATTACHARJEE RR, LAU-CHAPDELAINE S S M, MAINES G, et al. Detonation re-initiation mechanism following the Mach reflection of a quenched detonation[J]. Proceedings of the Combustion Institute, 2013, 34(2):1893-1901. https://doi.org/10.1016/j.proci.2012.07.063
    [51]
    KUO KK, ACHARYA R. Fundamentals of turbulent and multiphase combustion[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. https://doi.org/10.1002/9781118107683
    [52]
    GONZALEZ-JUEZ E D, KERSTEIN A R, RANJAN R, et al. Advances and challenges in modeling high-speed turbulent combustion in propulsion syste ms[J]. Progress in Energy and Combustion Science, 2017, 60:26-67. https://doi.org/10.1016/j.pecs.2016.12.003
    [53]
    ZBIKOWSKI M, MAKAROV D, MOLKOV V. LES model of large scale hydrogen-air planar detonations:Verification by the ZND theory[J]. International Journal of Hydrogen Energy, 2008, 33(18):4884-4892. https://doi.org/10.1016/j.ijhydene.2008.05.071
    [54]
    ZBIKOWSKI M, MAKAROV D, MOLKOV V. Numerical simulations of large-scale detonation tests in the RUT facility by the LESmodel[J]. Journal of Hazardous Materials, 2010, 181(1/2/3):949-956. https://doi.org/10.1016/j.jhazmat.2010.05.105
    [55]
    RIKANATI A, SADOT O, BEN-DOR G, et al. Shock-wave Mach-reflection slip-stream instability:a secondary small-scale turbulent mixingphenomenon[J]. Physical Review Letters, 2006, 96(17):174503. https://doi.org/10.1103/physrevlett.96.174503
    [56]
    MAXWELL B M, FALLE S A E G, SHARPE G, et al. A compressible-LEM turbulent combustion subgrid model for assessing gaseous explosion hazards[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:460-470. https://doi.org/10.1016/j.jlp.2015.01.014
    [57]
    MAXWELL B M, BHATTACHARJEE R R, LAU-CHAPDELAINE S S M, et al. Influence of turbulent fluctuations on detonation propagation[J]. Journal of Fluid Mechanics, 2017, 818:646-696. https://doi.org/10.1017/jfm.2017.145
    [58]
    MAXWELL B, PEKALSKI A, RADULESCU M. Modelling of the transition of a turbulent shock-flame complex to detonation using the linear eddy model[J]. Combustion and Flame, 2018, 192:340-357. https://doi.org/10.1016/j.combustflame.2018.02.013
    [59]
    KIYANDA C B. Photographic study of the structure of irregular detonation waves[D]. Montreal: McGill University, 2005.
    [60]
    KERSTEIN A R. Linear-eddy modeling of turbulent transport. Ⅱ:Application to shear layer mixing[J]. Combustion and Flame, 1989, 75(3/4):397-413. https://doi.org/10.1016/0010-2180(89)90051-5
    [61]
    CHAKRAVARTHY V K, MENON S. Subgrid Modeling of Turbulent Premixed Flames in the Flamelet Regime[J]. Flow, Turbulence and Combustion, 2000, 65:133-161. https://doi.org/10.1023/A:1011456218761
    [62]
    CHAKRAVARTHY V K, MENON S. Linear eddysimulations of Reynolds number and Schmidt number effects on turbulent scalar mixing[J]. Physics of Fluids, 2001, 13(2):488-499. https://doi.org/10.1063/1.1335540
    [63]
    SANKARAN V, MENON S. LES of scalar mixing in supersonic mixinglayers[J]. Proceedings of the Combustion Institute, 2005, 30(2):2835-2842. https://doi.org/10.1016/j.proci.2004.08.027
    [64]
    WOOSLEY S E, KERSTEIN A R, SANKARAN V, et al. Type Ia Supernovae:calculations of turbulent flames using the linear eddy model[J]. The Astrophysical Journal, 2009, 704(1):255-273. https://doi.org/10.1088/0004-637x/704/1/255
    [65]
    KIYANDA C B, HIGGINS A J. Photographic investigation into the mechanism of combustion in irregular detonationwaves[J]. Shock Waves, 2013, 23(2):115-130. https://doi.org/10.1007/s00193-012-0413-8
    [66]
    ABDEL-GAYED R G, AL-KHISHALI K J, BRADLEY D. Turbulent burning velocities and flame straining in explosions[J]. Proceedings of the Royal Society A, 1984, 391:393-414. https://doi.org/10.1098/rspa.1984.0019

Catalog

    Article views (244) PDF downloads (253) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return