WANG H T, ZHU Y Z, CHE X K, et al. Separation bubble and aerodynamic characteristics of S1223 airfoil at low Reynolds numbers[J]. Acta Aerodynamica Sinica, 2021, 39(3): 90−98. DOI: 10.7638/kqdlxxb-2020.0075
Citation: WANG H T, ZHU Y Z, CHE X K, et al. Separation bubble and aerodynamic characteristics of S1223 airfoil at low Reynolds numbers[J]. Acta Aerodynamica Sinica, 2021, 39(3): 90−98. DOI: 10.7638/kqdlxxb-2020.0075

Separation bubble and aerodynamic characteristics of S1223 airfoil at low Reynolds numbers

More Information
  • Received Date: April 28, 2020
  • Revised Date: July 05, 2020
  • Accepted Date: July 12, 2020
  • Available Online: June 20, 2021
  • The surface pressure distribution of the S1223 airfoil at low Reynolds numbers (Re = 6.0×104, 1.0×105 and 2.0×105) was measured using the surface pressure measurement technique. Both time-averaging and transient processing methods were used to obtain the steady and transient pressure/lift coefficients on the airfoil. Combined with the flow structure analysis, the influence mechanism of the Reynolds number and the angle of attack on the lift of the airfoil was studied. According to the variation of time averaged lift coefficient with the angle of attack, S1223 airfoil exibits a "static hysteresis" effect at low Reynolds numbers. The results show that under negative angles of attack, the lift coefficient curve shows a nonlinear phenomenon where its slope gradually increases. When the angle of attack is increased from a negative value, the lower wing surface changes from the state of complete separation to that of laminar separation bubbles, then the separation bubbles gradually shrink until disappeared, resulting in the slope of the lift coefficient curve gradually increasing with the angle of attack. When the angle of attack exceeds the stall value, the flow structures on the S1223 airfoil under different Reynolds numbers are essentially different. At Re = 6.0×104 and 1.0×105, the flow field around the airfoil rapidly undergoes large-scale flow separation, and the lift coefficient decreases sharply; at Re = 2.0×105, short bubbles on the upper wing surface are generated periodically, causing low-frequency oscillations, and the lift coefficient exhibits a quasi-periodic variation. In the meantime, the averaged flow field on the upper wing surface exhibits a long bubble structure with a chord length of 40%.
  • [1]
    JONES B M. An experimental study of stalling of the wings[J]. The Aeronautical Journal, 1934, 38(285): 753-770.
    [2]
    GAULT D E. Boundary-layer and stalling characteristics of the NACA 63-009 airfoil section[R]. NACA TN-1894.
    [3]
    GASTER M. The structure and behaviour of laminar separation bubbles[R]. R&M 1966-3595.
    [4]
    WONG C W, KURITA S, RINOIE K. Bubble burst control for stall suppression on a NACA 631-012 airfoil[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, Florida. Reston, Virginia: AIAA, 2009. doi: 10.2514/6.2009-1111.
    [5]
    KOCA K, GENÇ M S, AÇıKEL H H, et al. Identification of flow phenomena over NACA 4412 wind turbine airfoil at low Reynolds numbers and role of laminar separation bubble on flow evolution[J]. Energy, 2018, 144: 750-764.DOI: 10.1016/j.energy.2017.12.045.
    [6]
    SHEN X, AVITAL E, PAUL G, et al. Experimental study of surface curvature effects on aerodynamic performance of a low Reynolds number airfoil for use in small wind turbines[J]. Journal of Renewable and Sustainable Energy, 2016, 8(5): 053303.DOI: 10.1063/1.4963236.
    [7]
    王庶, 米建春. 大湍流度对超低雷诺数下翼型受力及绕流的影响[J]. 航空学报, 2011, 32(1): 41-48.

    WANG S, MI J C. Effect of large turbulence intensity on airfoil load and flow[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 41-48. (in Chinese).
    [8]
    吴鋆, 王晋军, 李天. NACA0012 翼型低雷诺数绕流的实验研究[J]. 实验流体力学, 2013, 27(6): 32-38. doi: 10.3969/j.issn.1672-9897.2013.06.006

    WU J, WANG J J, LI T. Experimental investigation on low Reynolds number behavior of NACA0012 airfoi[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6): 32-38. (in Chinese). doi: 10.3969/j.issn.1672-9897.2013.06.006
    [9]
    朱志斌, 刘强, 白鹏. 低雷诺数翼型层流分离现象大涡模拟方法[J]. 空气动力学学报, 2019, 37(06): 915-923. doi: 10.7638/kqdlxxb-2018.0025

    ZHU Z B, LIU Q, BAI P. Large eddy simulation method for the laminar separation phenomenon on low Reynolds number airfoils[J]. Acta Aerodynamica Sinica, 2019, 37(06): 915-923. (in Chinese)DOI: 10.7638/kqdlxxb-2018.0025.
    [10]
    白鹏, 崔尔杰, 李锋, 等. 对称翼型低雷诺数小攻角升力系数非线性现象研究[J]. 力学学报, 2006, 38(1): 1-8. doi: 10.3321/j.issn:0459-1879.2006.01.001

    BAI P, CUI E J, LI F, et al. Study of the nonlinear lift coefficient of the symmetrical airfoil at low Reynolds number near the 0° angle of attack[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 1-8. (in Chinese)DOI: 10.3321/j.issn:0459-1879.2006.01.001.
    [11]
    白鹏, 崔尔杰, 周伟江, 等. 隐式格式求解拟压缩性非定常不可压Navier-Stokes方程[J]. 计算物理, 2005, 22(5): 386-392. doi: 10.3969/j.issn.1001-246X.2005.05.002

    BAI P, CUI E J, ZHOU W J, et al. An implicit method for the pseudo-compressibility incompressible navier-stokes equation[J]. Chinese Journal of Computational Physics, 2005, 22(5): 386-392. (in Chinese)DOI: 10.3969/j.issn.1001-246X.2005.05.002.
    [12]
    白鹏, 崔尔杰, 周伟江, 等. 翼型低雷诺数层流分离泡数值研究[J]. 空气动力学学报, 2006, 24(4): 416-424. doi: 10.3969/j.issn.0258-1825.2006.04.004

    BAI P, CUI E J, ZHOU W J, et al. Numerical simulation of laminar separation bubble over 2D airfoil at low Reynolds number[J]. Acta Aerodynamica Sinica, 2006, 24(4): 416-424. (in Chinese)DOI: 10.3969/j.issn.0258-1825.2006.04.004.
    [13]
    白鹏, 李锋, 詹慧玲, 等. 翼型低Re数小攻角非线性非定常层流分离现象研究[J]. 中国科学: 物理学 力学 天文学, 2015, 45(2): 46-57.

    BAI P, LI F, ZHAN H L, et al. Study about the non-linear and unsteady laminar separation phenomena around the airfoil at low Reynolds number with low incidence[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(2): 46-57. (in Chinese).
    [14]
    孟宣市, 杨泽人, 陈琦, 等. 低雷诺数下层流分离的等离子体控制[J]. 航空学报, 2016, 37(7): 2112-2122. doi: 10.7527/S1000-6893.2015.0244

    MENG X S, YANG Z R, CHEN Q, et al. Laminar separation control at low Reynolds numbers using plasma actuation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7): 2112-2122. (in Chinese)DOI: 10.7527/S1000-6893.2015.0244.
    [15]
    MENG X S, HU H Y, YAN X, et al. Lift improvements using duty-cycled plasma actuation at low Reynolds numbers[J]. Aerospace Science and Technology, 2018, 72: 123-133.DOI: 10.1016/j.ast.2017.10.038.
    [16]
    ALMUTAIRI J H, JONES L E, SANDHAM N D. Intermittent bursting of a laminar separation bubble on an airfoil[J]. AIAA Journal, 2010, 48(2): 414-426.DOI: 10.2514/1.44298.
    [17]
    ALMUTAIRI J, ALQADII, ELJACK E. Large eddy simulation of a NACA-0012 airfoil near stall[R]//Direct and Large-Eddy Simulaton IX, ERCOFTAC Series 20, 2015. doi: 10.1007/978-3-319-14448-1_49.
    [18]
    ALMUTAIRI J, ELJACK E, ALQADI I. Dynamics of laminar separation bubble over NACA-0012 airfoil near stall conditions[J]. Aerospace Science and Technology, 2017, 68: 193-203. doi: 10.1016/j.ast.2017.05.015.
    [19]
    ZAMAN K B M Q, MCKINZIE D J, RUMSEY C L. A natural low-frequency oscillation of the flow over an airfoil near stalling conditions[J]. Journal of Fluid Mechanics, 1989, 202: 403-442.DOI: 10.1017/s0022112089001230.
    [20]
    BRAGG M B, HEINRICH D C, BALOW F A, et al. Flow oscillation over an airfoil near stall[J]. AIAA Journal, 1996, 34(1): 199-201.DOI: 10.2514/3.13045.
    [21]
    BROEREN A P, BRAGG M B. Flowfield measurements over an airfoil during natural low-frequency oscillations near stall[J]. AIAA Journal, 1999, 37(1): 130-132.DOI: 10.2514/2.678.
    [22]
    RINOIE K, TAKEMURA N. Oscillating behaviour of laminar separation bubble formed on an aerofoil near stall[J]. The Aeronautical Journal, 2004, 108(1081): 153-163.DOI: 10.1017/s0001924000000063.
    [23]
    SELIG M S, GUGLIELMO J J. High-lift low Reynolds number airfoil design[J]. Journal of Aircraft, 1997, 34(1): 72-79.DOI: 10.2514/2.2137.
    [24]
    LIU P Q, TANG Z H, CHEN Y X, et al. Experimental feasibility assessment of counter-rotating propellers for stratospheric airships[C]//53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida. Reston, Virginia: AIAA, 2015. doi: 10.2514/6.2015-1029.
    [25]
    陈庆亚, 田希晖, 车学科, 等. 平流层螺旋桨等离子体流动控制地面实验方法[J]. 实验流体力学, 2015(5): 90-96. doi: 10.11729/syltlx20140140

    CHEN Q Y, TIAN X H, CHE X K, et al. Ground experimental method for stratospheric propeller plasma flow control[J]. Journal of Experiments in Fluid Mechanics, 2015(5): 90-96. (in Chinese)DOI: 10.11729/syltlx20140140.
    [26]
    SUDHAKAR S, VENKATAKRISHNAN L, RAMESH O N. The influence of leading-edge tubercles on airfoil performance at low Reynolds numbers[C]//Proc of the AIAA Scitech 2020 Forum, Orlando, FL. Reston, Virginia: AIAA, 2020. doi: 10.2514/6.2020-2219.
    [27]
    GUERRERO J E. Aerodynamic performance of cambered heaving airfoils[J]. AIAA Journal, 2010, 48(11): 2694-2698.DOI: 10.2514/1.J050036.
    [28]
    ARANAKE A C, LAKSHMINARAYAN V K, DURAISAMY K. Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver[J]. Renewable Energy, 2015, 75: 818-832.DOI: 10.1016/j.renene.2014.10.049.
    [29]
    高建强, 姜华伟, 夏豹, 等. 鼓泡流化床风帽压力信号的频谱分析[J]. 动力工程学报, 2011, 31(5): 336-341.

    GAO J Q, JIANG H W, XIA B, et al. Frequency spectrum analysis on pressure signals of wind caps in a bubbling fluidized bed[J]. Chinese Journal of Power Engineering, 2011, 31(5): 336-341. (in Chinese).
    [30]
    张伏生, 耿中行, 葛耀中. 电力系统谐波分析的高精度FFT算法[J]. 中国电机工程学报, 1999(3): 63-66. doi: 10.3321/j.issn:0258-8013.1999.03.015

    ZHANG F S, GENG Z X, GE Y Z. Fft algorithm with high accuracy for harmonic analysis in power system[J]. Proceedings of the Chinese Society for Electrical Engineering, 1999(3): 63-66. (in Chinese)DOI: 10.3321/j.issn:0258-8013.1999.03.015.
    [31]
    TANI I. Low-speed flows involving bubble separations[J]. Progress in Aerospace Sciences, 1964, 5: 70-103.DOI: 10.1016/0376-0421(64)90004-1
  • Related Articles

    [1]SUN Qixiang, WANG Wanbo, HUANG Yong, WANG Xunnian, PAN Jiaxin. Key factors affecting the separation control effect of oscillating jets[J]. ACTA AERODYNAMICA SINICA, 2024, 42(2): 56-67. DOI: 10.7638/kqdlxxb-2023.0024
    [2]SHI Zeqi, LIU Yong, ZHONG Bowen, TANG Chonghui. Hydrodynamic characteristics in separation bubbles of airfoil under acoustic vortex interaction[J]. ACTA AERODYNAMICA SINICA, 2023, 41(2): 29-37. DOI: 10.7638/kqdlxxb-2021.0308
    [3]CHEN Gong, TANG Zhigong, DENG Chen, WANG Wenzheng. An aerodynamic configuration optimization method for reducing lateral aerodynamic nonlinearity of reentry vehicle[J]. ACTA AERODYNAMICA SINICA, 2021, 39(2): 33-38. DOI: 10.7638/kqdlxxb-2020.0131
    [4]YAO Yao, GAO Bo. Flow structure of incident shock wave boundary layer interaction with separation[J]. ACTA AERODYNAMICA SINICA, 2019, 37(5): 740-747, 769. DOI: 10.7638/kqdlxxb-2018.0155
    [5]Ai Guoyuan, Ye Jian. Large-eddy simulation of low Reynolds number airfoil with different separating flow regime[J]. ACTA AERODYNAMICA SINICA, 2017, 35(2): 299-304. DOI: 10.7638/kqdlxxb-2016.0159
    [6]Zhang Wanglong, Tan Junjie, Chen Zhihua, Ren Dengfeng. Investigation on characteristics of suction control on separation flow around an airfoil at low Reynolds number[J]. ACTA AERODYNAMICA SINICA, 2015, 33(1): 113-119. DOI: 10.7638/kqdlxxb-2013.0009
    [7]LIU Peiqing, MA Lichuan, QU Qiulin, Duan Zhongzhe. Numerical investigation of the laminar separation bubble control by blowing/suction on an airfoil at low Re number[J]. ACTA AERODYNAMICA SINICA, 2013, 31(4): 518-524.
    [8]HE Fei, SONG Wen-ping. Improving the aerodynamic performance of low Reynolds number airfoils in oscillating freestream with forced transition method[J]. ACTA AERODYNAMICA SINICA, 2007, 25(4): 495-499.
    [9]Numerical simulation of laminar separation bubble over 2D airfoil at low Reynolds number[J]. ACTA AERODYNAMICA SINICA, 2006, 24(4): 416-424.
    [10]Luo Baihua, Hu Zhangwei, Dai Changhui. Analysis and Frequency Estimation of Flow Induced Cavity Oscillation[J]. ACTA AERODYNAMICA SINICA, 1999, 17(1): 39-43.
  • Cited by

    Periodical cited type(7)

    1. 陈柏仪,张超群,李建波. 火星大气环境下加装格尼襟翼翼型的气动特性. 空气动力学学报. 2025(03): 98-109 . 本站查看
    2. Xuntong Wei,Deyou Li,Siqi Li,Hong Chang,Xiaolong Fu,Zhigang Zuo,Hongjie Wang. Effect of leading-edge protuberances on swept wing aircraft performance. International Journal of Fluid Engineering. 2024(03): 18-28 .
    3. 史泽奇,刘勇,钟伯文,汤崇辉. 声涡相互作用下翼型分离泡内流动动力学特征. 空气动力学学报. 2023(02): 29-37 . 本站查看
    4. 刘一宏,马兴宇,巩绪安,黄逸军,王勇,姜楠. 仿生覆羽控制固定翼无人机流动失速风洞实验. 空气动力学学报. 2023(10): 52-60 . 本站查看
    5. 狄辉,车学科,钟战,吴祥东,朱少鹏. 滑动弧等离子体强化甲烷/空气扩散火焰燃烧研究. 机电产品开发与创新. 2021(06): 5-7 .
    6. 韩忠华,高正红,宋文萍,夏露. 翼型研究的历史、现状与未来发展. 空气动力学学报. 2021(06): 1-36 . 本站查看
    7. 巩绪安,张鑫,马兴宇,范子椰,姜楠. 仿生学覆羽控制翼型流动分离实验. 空气动力学学报. 2021(06): 184-195 . 本站查看

    Other cited types(4)

Catalog

    Article views (797) PDF downloads (107) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return