WU Zhengyuan, MO Fan, GAO Zhenxun, JIANG Chongwen, LEE Chunhian. Direct numerical simulation of turbulent and high-temperature gas effect coupled flow[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1111-1119,1128. DOI: 10.7638/kqdlxxb-2020.0132
Citation: WU Zhengyuan, MO Fan, GAO Zhenxun, JIANG Chongwen, LEE Chunhian. Direct numerical simulation of turbulent and high-temperature gas effect coupled flow[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1111-1119,1128. DOI: 10.7638/kqdlxxb-2020.0132

Direct numerical simulation of turbulent and high-temperature gas effect coupled flow

More Information
  • Received Date: August 13, 2020
  • Revised Date: October 25, 2020
  • Available Online: January 07, 2021
  • In this paper, direct numerical simulation (DNS) studies are carried out on the hypersonic and high-enthalpy turbulent boundary layer, and the coupling mechanism of the high-temperature gas effect and turbulence is analyzed. It is found that the high-temperature gas effect significantly reduces the mean temperature and increases the mean density in boundary layer, while reduce the temperature fluctuation. In the near-wall area, both the velocity fluctuation and density fluctuation are enhanced. But in the outer area of boundary layer, these turbulent fluctuations are suppressed by high-temperature gas effect. For the Reynolds stress, high-temperature gas effect decreases the Reynolds stress value in the area of y+>500 in boundary layer, while increases the Reynolds stress value in the region of y+ < 500, which in turn enhances the momentum exchange caused by turbulence. Thereby, skin friction is increased. The wall heat transfer is strengthened by high-temperature gas effect as well. Moreover, the high temperature gas effect increases both the mean pressure and the fluctuation pressure at wall.
  • [1]
    葛明明, 曾明, 王东方, 等.存在烧蚀的高超声速压缩拐角流动数值研究[J].空气动力学学报, 2016, 34(5):666-673. http://journal16.magtechjournal.com/Jweb_aas/CN/abstract/abstract11919.shtml

    GE M M, ZENG M, WANG D F, et al. Numerical study for the hypersonic compression corner flow with ablation[J]. Acta Aerodynamica Sinica, 2016, 34(5):666-673.(in Chinese) http://journal16.magtechjournal.com/Jweb_aas/CN/abstract/abstract11919.shtml
    [2]
    童福林, 李欣, 于长平, 等.高超声速激波湍流边界层干扰直接数值模拟研究[J].力学学报, 2018, 50(2): 197-208. doi: 10.6052/0459-1879-17-239

    TONG F L, LI X, YU C P, et al. Direct numerical simulation of hypersonic shock wave and turbulent boundary layer interactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208.(in Chinese) DOI: 10.6052/0459-1879-17-239
    [3]
    DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature[J]. Journal of Fluid Mechanics, 2010, 655: 419-445. DOI: 10.1017/s0022112010000959
    [4]
    DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number[J]. Journal of Fluid Mechanics, 2011, 672:245-267.DOI: 10.1017/s0022112010005902
    [5]
    谭杰, 孙晓峰, 刘芙群, 等.高超声速平板/空气舵热环境数值模拟研究[J].空气动力学学报, 2019, 37(1):153-159. doi: 10.7638/kqdlxxb-2018.0234

    TAN J, SUN X F, LIU F Q, et al. Numerical simulation of aerodynamic heating environment of a hypersonic plate/rudder configuration[J]. Acta Aerodynamica Sinica, 2019, 37(1):153-159.(in Chinese) doi: 10.7638/kqdlxxb-2018.0234
    [6]
    韩宇峰, 马绍贤, 苏彩虹.高超声速三维边界层横流转捩的数值研究[J].空气动力学学报, 2019, 37(4):522-529. doi: 10.7638/kqdlxxb-2019.0015

    HAN Y F, MA S X, SU C H. Numerical study on cross-flow transition in three-dimensional hypersonic boundary layers[J]. Acta Aerodynamica Sinica, 2019, 37(4):522-529.(in Chinese)DOI: 10.7638/kqdlxxb-2019.0015
    [7]
    ZHANG C, DUAN L, CHOUDHARI M M. Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers[J]. AIAA Journal, 2018, 56(11):4297-4311.DOI: 10.2514/1.J057296
    [8]
    陈坚强.国家数值风洞(NNW)工程关键技术研究进展[J].中国科学: 技术科学, 2020(在线发表).

    CHEN J Q. Advances in the key technologies of Chinese National Numerical Windtunnel project[J]. Scientia Sinica Technologica, 2020(online). (in Chinese)DOI: 10.1360/SST-2020-0334
    [9]
    DUAN L, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy[J]. Journal of Fluid Mechanics, 2011, 684:25-59.DOI: 10.1017/jfm.2011.252
    [10]
    DUAN L, MARTÍN M P. Assessment of turbulence-chemistry interaction in hypersonic turbulent boundary layers[J]. AIAA Journal, 2011, 49(1):172-184.DOI: 10.2514/1.j050605
    [11]
    CHEN X P, LI X L. Direct numerical simulation of chemical non-equilibrium turbulent flow[J]. Chinese Physics Letters, 2013, 30(6):064702.DOI: 10.1088/0256-307x/30/6/064702
    [12]
    GUPTA R N, YOS J, THOMPSON R A, et al. A review of reaction and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K[R]. NASA RP-1232, 1990.
    [13]
    WILKE C R. A viscosity equation for gas mixtures[J]. The Journal of Chemical Physics, 1950, 18(4):517-519.DOI: 10.1063/1.1747673
    [14]
    ATTILI A, BISETTI F. Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ=250[J]. Physics of Fluids, 2012, 24(3):035109.DOI: 10.1063/1.3696302
    [15]
    SHUR M L, SPALART P R, STRELETS M K, et al. Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems[J]. Flow, Turbulence and Combustion, 2014, 93(1):63-92.DOI: 10.1007/s10494-014-9534-8
    [16]
    DHAMANKAR N S, BLAISDELL G A, LYRINTZIS A S. Overview of turbulent inflow boundary conditions for large-eddy simulations[J]. AIAA Journal, 2018, 56(4):1317-1334.DOI: 10.2514/1.j055528
    [17]
    SCHLVTER J U, WU X, KIM S, et al. A framework for coupling Reynolds-averaged with large-eddy simulations for gas turbine applications[J]. Journal of Fluids Engineering, 2005, 127(4):806-815.DOI: 10.1115/1.1994877
    [18]
    SAGAUT P, GARNIER E, TROMEUR E, et al. Turbulent inflow conditions for large-eddy-simulation of compressible wall-bounded flows[J]. AIAA Journal, 2004, 42(3):469-477.DOI: 10.2514/1.3461
    [19]
    MARTIN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments[J]. Journal of Fluid Mechanics, 2007, 570:347-364.DOI: 10.1017/s0022112006003107
    [20]
    SPALART P R. Direct simulation of a turbulent boundary layer up to Rθ=1410[J]. Journal of Fluid Mechanics, 1988, 187:61-98.DOI: 10.1017/s0022112088000345
    [21]
    GAO Z X, JIANG C W, LEE C H. A new wall function boundary condition including heat release effect for supersonic combustion flows[J]. Applied Thermal Engineering, 2016, 92:62-70.DOI: 10.1016/j.applthermaleng.2015.09.089
    [22]
    GAO Z X, JIANG C W, LEE C. Improvement and application of wall function boundary condition for high-speed compressible flows[J]. Science China Technological Sciences, 2013, 56(10):2501-2515.DOI: 10.1007/s11431-013-5349-4
    [23]
    WILLIAMS O J H, SAHOO D, BAUMGARTNER M L, et al. Experiments on the structure and scaling of hypersonic turbulent boundary layers[J]. Journal of Fluid Mechanics, 2018, 834:237-270.DOI: 10.1017/jfm.2017.712
  • Cited by

    Periodical cited type(11)

    1. 荣国梁,杨逸帆,李创创,李志远,李学良,赵家权,吴杰. 基于双喉道Ludwieg管风洞稳定段的匀流加热融合设计. 航空学报. 2025(09): 178-191 .
    2. 左政玄,赵瑞,樊宇翔. 高焓湍流边界层直接数值模拟与湍流模型改进研究. 空天技术. 2024(02): 89-98 .
    3. 刘晓东,刘朋欣,李辰,孙东,袁先旭. 高焓压缩膨胀角湍流与化学反应干扰研究. 空天技术. 2024(02): 79-88 .
    4. 袁先旭,刘朋欣,周清清,傅亚陆,杨肖峰,杜雁霞. 高速高温湍流研究进展. 空气动力学学报. 2024(04): 1-13 . 本站查看
    5. 杨茂桃,梁爽,易淼荣,田野,郭明明,乐嘉陵,张华. 基于深度神经网络的超声速隔离段湍流涡黏性系数辨识. 航空动力学报. 2023(02): 312-324 .
    6. 刘朋欣 ,孙东 ,李辰 ,郭启龙 ,袁先旭 . 高焓湍流边界层壁面摩阻产生机制分析. 力学学报. 2022(01): 39-47 .
    7. 熊有德,余涛,薛涛,吴杰. 聚焦激光差分干涉法测量超/高超声速流动的进展. 实验流体力学. 2022(02): 9-20 .
    8. 陈贤亮,符松. 高超声速高焓边界层稳定性与转捩研究进展. 力学学报. 2022(11): 2937-2957 .
    9. 莫凡,高振勋,蒋崇文,李椿萱. 高温化学非平衡效应对高超声速飞行器气动力/热影响的数值研究进展. 中国科学:物理学 力学 天文学. 2021(10): 26-41 .
    10. 袁先旭,陈坚强,杜雁霞,郭启龙,肖光明,傅亚陆,梁飞,涂国华. 国家数值风洞(NNW)工程中的CFD基础科学问题研究进展. 航空学报. 2021(09): 31-48+2 .
    11. 刘朋欣,袁先旭,梁飞,李辰,孙东. 高温化学非平衡湍流边界层脉动量象限分析. 航空学报. 2021(S1): 4-15 .

    Other cited types(2)

Catalog

    Article views (871) PDF downloads (54) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return