CHEN Jianqiang, MA Yankai, MIN Yaobing, ZHAO Zhong, HE Xianyao, HE Kun. Design and development of homogeneous hybrid solvers on National Numerical Windtunnel (NNW) PHengLEI[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1103-1110. DOI: 10.7638/kqdlxxb-2020.0177
Citation: CHEN Jianqiang, MA Yankai, MIN Yaobing, ZHAO Zhong, HE Xianyao, HE Kun. Design and development of homogeneous hybrid solvers on National Numerical Windtunnel (NNW) PHengLEI[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1103-1110. DOI: 10.7638/kqdlxxb-2020.0177

Design and development of homogeneous hybrid solvers on National Numerical Windtunnel (NNW) PHengLEI

More Information
  • Received Date: September 27, 2020
  • Revised Date: October 19, 2020
  • Available Online: January 07, 2021
  • To the complexity of Computational Fluid Dynamics in the future, a framework of hybrid solver has been designed in NNW-PHengLEI software with different solvers on different type of meshes, and the zonal hybrid simulation is achieved. Other than the traditional heterogeneous computing model loose-coupling multi-solver, the homogeneous computing model hybrid solver is designed in NNW-PHengLEI software. The elementary idea of homogeneous computing model with hybrid solver is that, the whole computation zone can be divided into sub-zones filled by different type of meshes, different solvers can be operated according to the mesh, and the information at the interface of different solvers is exchanged by database, so that the salient feature of zonal hybrid solver is tight-coupling computing. The advantages of different solvers on different type of meshes can be promoted by zonal hybrid simulation, and the multidisciplinary solvers can be run on different meshes in the future. The zonal hybrid simulation is a key technique to the multidisciplinary/multi-zone simulations merged together. One example: second order/high order structure solver is run on structure grid, second order unstructured solver on unstructured grid, so that the significant feature of flow can be resolved by high order structure method, and the rest of flow field may be by second order unstructured solver. In this paper the basic concepts of zone and interface involved hybrid simulation are described firstly, and then the data structure and implement strategy are introduced, finally, two supersonic numerical examples 2D cylinder and 3D double ellipsoid cases verify the feasibility of hybrid simulation in NNW-PHengLEI software.
  • [1]
    SLOTNICK J, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences[R]. NASA/CR-218178, 2014.
    [2]
    MICHAL T, JOHNSON J, MICHAL T, et al. A hybrid structured/unstructured grid multi-block flow solver for distributed parallel processing[C]//Proc of the 13th Computational Fluid Dynamics Conference, Snowmass Village, CO, USA. Reston, Virigina: AIAA. AIAA 1997-1895, 1997. DOI: 10.2514/6.1997-1895
    [3]
    LÉGER R, PEYRET C, PIPERNO S. Study of a coupled DG/FD solver on hybrid meshes for CAA[C]//Proc of the 16th AIAA/CEAS Aeroacoustics Conference, Stockholm, Sweden. Reston, Virginia: AIAA. AIAA 2010-3937, 2010. DOI: 10.2514/6.2010-3937
    [4]
    LÉGER R, PEYRET C, PIPERNO S. Coupled discontinuous Galerkin/finite difference solver on hybrid meshes for computational aeroacoustics[J]. AIAA Journal, 2012, 50(2):338-349. DOI: 10.2514/1.j051110
    [5]
    PUIGT G, GAZAIX M, MONTAGNAC M, et al. Development of a new hybrid compressible solver inside the CFD elsA software[C]//Proc of the 20th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii. Reston, Virigina: AIAA. AIAA 2011-3379, 2011. DOI: 10.2514/6.2011-3379
    [6]
    DE LA LLAVE PLATA M, COUAILLIER V, LE PAPE M C, et al. elsA-Hybrid: an all-in-one structured/unstructured solver for the simulation of internal and external flows. Application to turbomachinery[C]//Proc of the Progress in Propulsion Physics, St. Petersburg, Russian. Les Ulis, France: EDP Sciences, 2013. DOI: 10.1051/eucass/201304417
    [7]
    JAIN R, BIEDRON R T, JONES W, et al. Modularization and validation of NASA FUN3D as a HPCMP CREATE-AV helios near-body solver[C]//Proc of the 54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA. AIAA 2016-1298, 2016. DOI: 10.2514/6.2016-1298
    [8]
    HE X, ZHAO Z, ZHANG L P. The research and development of structured-unstructured hybrid CFD software[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(sup):116-126.
    [9]
    陈坚强.国家数值风洞工程(NNW)关键技术研究进展[J].中国科学: 技术科学, 2020(在线发表).

    CHEN J Q. Advances in the key technologies of Chinese National Numerical Windtunnel project[J]. Sscientia Sinica Technologica, 2020(online). (in Chinese) DOI: 10.1360/SST-2020-0334
    [10]
    赵钟, 张来平, 何磊, 等.适用于任意网格的大规模并行CFD计算框架PHengLEI[J].计算机学报, 2019, 42(11):2368-2383. doi: 10.11897/SP.J.1016.2019.02368

    ZHAO Z, ZHANG L P, HE L, et al. PHengLEI:A large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers, 2019, 42(11):2368-2383.(in Chinese) DOI: 10.11897/SP.J.1016.2019.02368
    [11]
    赵钟, 何磊, 何先耀.风雷(PHengLEI)通用CFD软件设计[J].计算机工程与科学, 2020, 42(2):210-219. doi: 10.3969/j.issn.1007-130X.2020.02.004

    ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science, 2020, 42(2):210-219.(in Chinese) doi: 10.3969/j.issn.1007-130X.2020.02.004
    [12]
    DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1):22-44. DOI: 10.1006/jcph.2000.6594
    [13]
    NONOMURA T, IIZUKA N, FUJII K. Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids[J]. Computers & Fluids, 2010, 39(2):197-214. DOI: 10.1016/j.compfluid.2009.08.005
    [14]
    DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4):1100-1115. DOI: 10.1016/j.jcp.2010.10.028
    [15]
    DENG X G, MIN Y B, MAO M L, et al. Further studies on Geometric Conservation Law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239:90-111. DOI: 10.1016/j.jcp.2012.12.002
    [16]
    DENG X G, CHEN Y M. A novel strategy for deriving high-order stable boundary closures based on global conservation, I:Basic formulas[J]. Journal of Computational Physics, 2018, 372:80-106. DOI: 10.1016/j.jcp.2018.06.012
    [17]
    TU G H, DENG X G, MAO M L. Assessment of two turbulence models and some compressibility corrections for hypersonic compression corners by high-order difference schemes[J]. Chinese Journal of Aeronautics, 2012, 25(1):25-32. DOI: 10.1016/S1000-9361(11)60358-0
    [18]
    WIETING A R. Experimental study of shock wave interference heating on a cylindrical leading edge[R]. NASA/TM-100484, 1987.
    [19]
    LI Z W, TAO X C, ZHANG H X. Numerical simulation of aerodynamic heating over complex hypersonic vehicles[J]. CFD Journal, 2004, 13(2):317-322.
    [20]
    刘昕, 邓小刚, 毛枚良, 等.高精度格式WCNS-E-5计算物面热流[J].计算物理, 2005, 22(5):393-398. doi: 10.3969/j.issn.1001-246X.2005.05.003

    LIU X, DENG X G, MAO M L, et al. A high-order accurate scheme WCNS-E-5 applied to body heat transfer distributions[J]. Chinese Journal of Computational Physics, 2005, 22(5):393-398.(in Chinese) DOI: 10.3969/j.issn.1001-246X.2005.05.003
    [21]
    毛枚良, 江定武, 邓小刚.高超声速层流气动热预测混合算法研究[J].空气动力学学报, 2009, 27(3):275-280. doi: 10.3969/j.issn.0258-1825.2009.03.003

    MAO M L, JIANG D W, DENG X G. Study of hybrid scheme for theprediction of aerodynamic heat transfer-rate in hypersonic laminar flow[J]. Acta Aerodynamica Sinica, 2009, 27(3):275-280.(in Chinese) doi: 10.3969/j.issn.0258-1825.2009.03.003
  • Related Articles

    [1]XIAO Wei, LYU Luogeng, FU Mou, CHEN Jiangtao, ZHANG Peihong, WU Xiaojun. Development and application of a credibility assessment platform for CFD software[J]. ACTA AERODYNAMICA SINICA, 2024, 42(10): 60-68. DOI: 10.7638/kqdlxxb-2023.0142
    [2]LEI Yinghaonan, LEI Sanhui, ZHANG Shenghao, WANG Ping. Numerical study on compressible gas-solid two-phase flow based on a particle solver implemented in NNW-PHengLEI[J]. ACTA AERODYNAMICA SINICA, 2023, 41(12): 37-47. DOI: 10.7638/kqdlxxb-2022.0161
    [3]HE Lei, GUO Yongyan, ZENG Zhichun, LAI Xiangcheng, ZHAO Zhong. Design and development of software automated continuous integration and testing platform for National Numerical Windtunnel project[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1158-1164. DOI: 10.7638/kqdlxxb-2020.0126
    [4]ZHAO Zhong, HE Lei, ZHANG Jian, XU Qingxin, ZHANG Laiping. MPI/OpenMP hybrid parallel computation of wall distance for turbulence flow simulations[J]. ACTA AERODYNAMICA SINICA, 2019, 37(6): 883-892. DOI: 10.7638/kqdlxxb-2017.0199
    [5]Zhao Zhong, He Xin, Zhang Laiping, He Kun, He Lei. Numerical research of NASA high-lift trap wing model based on HyperFLOW[J]. ACTA AERODYNAMICA SINICA, 2015, 33(5): 594-602. DOI: 10.7638/kqdlxxb-2014.0026
    [6]LI Zhong-hua, LI Zhi-hui, LI Hai-yan, HU Zhen-zhen, DAI Jin-wen, . Research on CFD/DSMC hybrid numerical method in rarefied flows[J]. ACTA AERODYNAMICA SINICA, 2013, 31(3): 282-287.
    [7]HE Xin, ZHANG Lai-ping, ZHAO Zhong, DENG Xiao-gang. Research of general large scale CFD software architecture and data structure[J]. ACTA AERODYNAMICA SINICA, 2012, 30(5): 557-565.
    [8]YUAN Xian-xu, DENG Xiao-bing, XIE Yu-fei, ZHANG Zhi-cheng. Research on the RANS/LES hybrid method for supersonic/hypersonic turbulence flow[J]. ACTA AERODYNAMICA SINICA, 2009, 27(6): 723-728.
    [9]LI Qi-liang, YANG Zhi-gang. Application of CFD for the design of aero-acoustic wind tunnel[J]. ACTA AERODYNAMICA SINICA, 2009, 27(3): 373-377.
    [10]GAO Zhi. The Wall-surface criteria with application to evaluating creditability of CFD simulations[J]. ACTA AERODYNAMICA SINICA, 2008, 26(3): 378-383,.
  • Cited by

    Periodical cited type(7)

    1. 杜一鸣,麻彤,邱福生,陈祖昌. 国家数值风洞风雷软件结构/非结构混合网格同构计算特性. 气动研究与试验. 2024(05): 22-39 .
    2. 刘君,刘瑜. 几个求解Euler方程的验证模型. 气体物理. 2024(06): 62-73 .
    3. 张子佩,赵钟,陈坚强,刘健,邓小兵. 风雷软件LES开发设计与验证. 航空学报. 2023(06): 156-173 .
    4. 张伦,牟斌,蒋浩,王建涛. 气液两相流混合模型代数重构方法. 空气动力学学报. 2023(08): 117-123 . 本站查看
    5. 郭勇颜,曾志春,何磊,何乾伟,严雪琴,赵钟. DLR-F11高升力构型的数值模拟. 计算物理. 2023(04): 401-415 .
    6. 张勇,张曦,万云博,何先耀,赵钟,卢宇彤. 非结构有限体积CFD计算的网格重排序优化. 计算机工程与科学. 2022(10): 1721-1729 .
    7. 袁先旭,陈坚强,杜雁霞,郭启龙,肖光明,傅亚陆,梁飞,涂国华. 国家数值风洞(NNW)工程中的CFD基础科学问题研究进展. 航空学报. 2021(09): 31-48+2 .

    Other cited types(6)

Catalog

    Article views (305) PDF downloads (60) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return