Citation: | CHEN Jianqiang, MA Yankai, MIN Yaobing, ZHAO Zhong, HE Xianyao, HE Kun. Design and development of homogeneous hybrid solvers on National Numerical Windtunnel (NNW) PHengLEI[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1103-1110. DOI: 10.7638/kqdlxxb-2020.0177 |
[1] |
SLOTNICK J, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences[R]. NASA/CR-218178, 2014.
|
[2] |
MICHAL T, JOHNSON J, MICHAL T, et al. A hybrid structured/unstructured grid multi-block flow solver for distributed parallel processing[C]//Proc of the 13th Computational Fluid Dynamics Conference, Snowmass Village, CO, USA. Reston, Virigina: AIAA. AIAA 1997-1895, 1997. DOI: 10.2514/6.1997-1895
|
[3] |
LÉGER R, PEYRET C, PIPERNO S. Study of a coupled DG/FD solver on hybrid meshes for CAA[C]//Proc of the 16th AIAA/CEAS Aeroacoustics Conference, Stockholm, Sweden. Reston, Virginia: AIAA. AIAA 2010-3937, 2010. DOI: 10.2514/6.2010-3937
|
[4] |
LÉGER R, PEYRET C, PIPERNO S. Coupled discontinuous Galerkin/finite difference solver on hybrid meshes for computational aeroacoustics[J]. AIAA Journal, 2012, 50(2):338-349. DOI: 10.2514/1.j051110
|
[5] |
PUIGT G, GAZAIX M, MONTAGNAC M, et al. Development of a new hybrid compressible solver inside the CFD elsA software[C]//Proc of the 20th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii. Reston, Virigina: AIAA. AIAA 2011-3379, 2011. DOI: 10.2514/6.2011-3379
|
[6] |
DE LA LLAVE PLATA M, COUAILLIER V, LE PAPE M C, et al. elsA-Hybrid: an all-in-one structured/unstructured solver for the simulation of internal and external flows. Application to turbomachinery[C]//Proc of the Progress in Propulsion Physics, St. Petersburg, Russian. Les Ulis, France: EDP Sciences, 2013. DOI: 10.1051/eucass/201304417
|
[7] |
JAIN R, BIEDRON R T, JONES W, et al. Modularization and validation of NASA FUN3D as a HPCMP CREATE-AV helios near-body solver[C]//Proc of the 54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA. AIAA 2016-1298, 2016. DOI: 10.2514/6.2016-1298
|
[8] |
HE X, ZHAO Z, ZHANG L P. The research and development of structured-unstructured hybrid CFD software[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(sup):116-126.
|
[9] |
陈坚强.国家数值风洞工程(NNW)关键技术研究进展[J].中国科学: 技术科学, 2020(在线发表).
CHEN J Q. Advances in the key technologies of Chinese National Numerical Windtunnel project[J]. Sscientia Sinica Technologica, 2020(online). (in Chinese) DOI: 10.1360/SST-2020-0334
|
[10] |
赵钟, 张来平, 何磊, 等.适用于任意网格的大规模并行CFD计算框架PHengLEI[J].计算机学报, 2019, 42(11):2368-2383. doi: 10.11897/SP.J.1016.2019.02368
ZHAO Z, ZHANG L P, HE L, et al. PHengLEI:A large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers, 2019, 42(11):2368-2383.(in Chinese) DOI: 10.11897/SP.J.1016.2019.02368
|
[11] |
赵钟, 何磊, 何先耀.风雷(PHengLEI)通用CFD软件设计[J].计算机工程与科学, 2020, 42(2):210-219. doi: 10.3969/j.issn.1007-130X.2020.02.004
ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science, 2020, 42(2):210-219.(in Chinese) doi: 10.3969/j.issn.1007-130X.2020.02.004
|
[12] |
DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1):22-44. DOI: 10.1006/jcph.2000.6594
|
[13] |
NONOMURA T, IIZUKA N, FUJII K. Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids[J]. Computers & Fluids, 2010, 39(2):197-214. DOI: 10.1016/j.compfluid.2009.08.005
|
[14] |
DENG X G, MAO M L, TU G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4):1100-1115. DOI: 10.1016/j.jcp.2010.10.028
|
[15] |
DENG X G, MIN Y B, MAO M L, et al. Further studies on Geometric Conservation Law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239:90-111. DOI: 10.1016/j.jcp.2012.12.002
|
[16] |
DENG X G, CHEN Y M. A novel strategy for deriving high-order stable boundary closures based on global conservation, I:Basic formulas[J]. Journal of Computational Physics, 2018, 372:80-106. DOI: 10.1016/j.jcp.2018.06.012
|
[17] |
TU G H, DENG X G, MAO M L. Assessment of two turbulence models and some compressibility corrections for hypersonic compression corners by high-order difference schemes[J]. Chinese Journal of Aeronautics, 2012, 25(1):25-32. DOI: 10.1016/S1000-9361(11)60358-0
|
[18] |
WIETING A R. Experimental study of shock wave interference heating on a cylindrical leading edge[R]. NASA/TM-100484, 1987.
|
[19] |
LI Z W, TAO X C, ZHANG H X. Numerical simulation of aerodynamic heating over complex hypersonic vehicles[J]. CFD Journal, 2004, 13(2):317-322.
|
[20] |
刘昕, 邓小刚, 毛枚良, 等.高精度格式WCNS-E-5计算物面热流[J].计算物理, 2005, 22(5):393-398. doi: 10.3969/j.issn.1001-246X.2005.05.003
LIU X, DENG X G, MAO M L, et al. A high-order accurate scheme WCNS-E-5 applied to body heat transfer distributions[J]. Chinese Journal of Computational Physics, 2005, 22(5):393-398.(in Chinese) DOI: 10.3969/j.issn.1001-246X.2005.05.003
|
[21] |
毛枚良, 江定武, 邓小刚.高超声速层流气动热预测混合算法研究[J].空气动力学学报, 2009, 27(3):275-280. doi: 10.3969/j.issn.0258-1825.2009.03.003
MAO M L, JIANG D W, DENG X G. Study of hybrid scheme for theprediction of aerodynamic heat transfer-rate in hypersonic laminar flow[J]. Acta Aerodynamica Sinica, 2009, 27(3):275-280.(in Chinese) doi: 10.3969/j.issn.0258-1825.2009.03.003
|
[1] | XIAO Wei, LYU Luogeng, FU Mou, CHEN Jiangtao, ZHANG Peihong, WU Xiaojun. Development and application of a credibility assessment platform for CFD software[J]. ACTA AERODYNAMICA SINICA, 2024, 42(10): 60-68. DOI: 10.7638/kqdlxxb-2023.0142 |
[2] | LEI Yinghaonan, LEI Sanhui, ZHANG Shenghao, WANG Ping. Numerical study on compressible gas-solid two-phase flow based on a particle solver implemented in NNW-PHengLEI[J]. ACTA AERODYNAMICA SINICA, 2023, 41(12): 37-47. DOI: 10.7638/kqdlxxb-2022.0161 |
[3] | HE Lei, GUO Yongyan, ZENG Zhichun, LAI Xiangcheng, ZHAO Zhong. Design and development of software automated continuous integration and testing platform for National Numerical Windtunnel project[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1158-1164. DOI: 10.7638/kqdlxxb-2020.0126 |
[4] | ZHAO Zhong, HE Lei, ZHANG Jian, XU Qingxin, ZHANG Laiping. MPI/OpenMP hybrid parallel computation of wall distance for turbulence flow simulations[J]. ACTA AERODYNAMICA SINICA, 2019, 37(6): 883-892. DOI: 10.7638/kqdlxxb-2017.0199 |
[5] | Zhao Zhong, He Xin, Zhang Laiping, He Kun, He Lei. Numerical research of NASA high-lift trap wing model based on HyperFLOW[J]. ACTA AERODYNAMICA SINICA, 2015, 33(5): 594-602. DOI: 10.7638/kqdlxxb-2014.0026 |
[6] | LI Zhong-hua, LI Zhi-hui, LI Hai-yan, HU Zhen-zhen, DAI Jin-wen, . Research on CFD/DSMC hybrid numerical method in rarefied flows[J]. ACTA AERODYNAMICA SINICA, 2013, 31(3): 282-287. |
[7] | HE Xin, ZHANG Lai-ping, ZHAO Zhong, DENG Xiao-gang. Research of general large scale CFD software architecture and data structure[J]. ACTA AERODYNAMICA SINICA, 2012, 30(5): 557-565. |
[8] | YUAN Xian-xu, DENG Xiao-bing, XIE Yu-fei, ZHANG Zhi-cheng. Research on the RANS/LES hybrid method for supersonic/hypersonic turbulence flow[J]. ACTA AERODYNAMICA SINICA, 2009, 27(6): 723-728. |
[9] | LI Qi-liang, YANG Zhi-gang. Application of CFD for the design of aero-acoustic wind tunnel[J]. ACTA AERODYNAMICA SINICA, 2009, 27(3): 373-377. |
[10] | GAO Zhi. The Wall-surface criteria with application to evaluating creditability of CFD simulations[J]. ACTA AERODYNAMICA SINICA, 2008, 26(3): 378-383,. |
1. |
杜一鸣,麻彤,邱福生,陈祖昌. 国家数值风洞风雷软件结构/非结构混合网格同构计算特性. 气动研究与试验. 2024(05): 22-39 .
![]() | |
2. |
刘君,刘瑜. 几个求解Euler方程的验证模型. 气体物理. 2024(06): 62-73 .
![]() | |
3. |
张子佩,赵钟,陈坚强,刘健,邓小兵. 风雷软件LES开发设计与验证. 航空学报. 2023(06): 156-173 .
![]() | |
4. |
张伦,牟斌,蒋浩,王建涛. 气液两相流混合模型代数重构方法. 空气动力学学报. 2023(08): 117-123 .
![]() | |
5. |
郭勇颜,曾志春,何磊,何乾伟,严雪琴,赵钟. DLR-F11高升力构型的数值模拟. 计算物理. 2023(04): 401-415 .
![]() | |
6. |
张勇,张曦,万云博,何先耀,赵钟,卢宇彤. 非结构有限体积CFD计算的网格重排序优化. 计算机工程与科学. 2022(10): 1721-1729 .
![]() | |
7. |
袁先旭,陈坚强,杜雁霞,郭启龙,肖光明,傅亚陆,梁飞,涂国华. 国家数值风洞(NNW)工程中的CFD基础科学问题研究进展. 航空学报. 2021(09): 31-48+2 .
![]() |