Citation: | FU J, LI J, WU Q. Application and prospect of Dopplar lidar in the wind field observation[J]. Acta Aerodynamica Sinica, 2021, 39(4): 172−179. DOI: 10.7638/kqdlxxb-2021.0060 |
[1] |
LIU Z L, BARLOW J F, CHAN P W, et al. A review of progress and applications of pulsed Doppler wind LiDARs[J]. Remote Sensing, 2019, 11(21): 2522.DOI: 10.3390/rs11212522.
|
[2] |
储玉飞, 刘东, 王珍珠, 等. 多普勒测风激光雷达的基本原理与技术进展[J]. 量子电子学报, 2020, 37(5): 580-600. doi: 10.3969/j.issn.1007-5461.2020.05.007
CHU Y F, LIU D, WANG Z Z, et al. Basic principle and technical progress of Doppler wind lidar[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580-600. (in Chinese)DOI: 10.3969/j.issn.1007-5461.2020.05.007.
|
[3] |
马福民, 陈涌, 杨泽后, 等. 激光多普勒测风技术最新进展[J]. 激光与光电子学进展, 2019, 56(18): 23-34. doi: 10.3788/LOP56.180003
MA F M, CHEN Y, YANG Z H, et al. Latest development of laser Doppler wind measurement technology[J]. Laser & Optoelectronics Progress, 2019, 56(18): 23-34 (in Chinese)DOI: 10.3788/LOP56.180003.
|
[4] |
罗杰, 侯再红, 靖旭, 等. 相干激光测风技术研究进展[J]. 量子电子学报, 2020, 37(2): 129-137. doi: 10.3969/j.issn.1007-5461.2020.02.001
LUO J, HOU Z H, JING X, et al. Advances in coherent laser wind measurement technology[J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 129-137. (in Chinese)DOI: 10.3969/j.issn.1007-5461.2020.02.001.
|
[5] |
周艳宗, 王冲, 刘燕平, 等. 相干测风激光雷达研究进展和应用[J]. 激光与光电子学进展, 2019, 56(2): 9-26.
ZHOU Y Z, WANG C, LIU Y P, et al. Research progress and application of coherent wind lidar[J]. Laser & Optoelectronics Progress, 2019, 56(2): 9-26. (in Chinese).
|
[6] |
RICCIARDELLI F, PIROZZI S, MANDARA A, et al. Accuracy of mean wind climate predicted from historical data through wind LIDAR measurements[J]. Engineering Structures, 2019, 201: 109771. doi: 10.1016/j.engstruct.2019.109771.
|
[7] |
GULLÌ D, AVOLIO E, CALIDONNA C R, et al. Two years of wind-lidar measurements at an Italian Mediterranean Coastal Site[J]. Energy Procedia, 2017, 125: 214-220. doi: 10.1016/j.egypro.2017.08.194.
|
[8] |
左金辉, 贾豫东. 多普勒激光雷达风场反演研究进展[J]. 激光与红外, 2021, 51(1): 3-8. doi: 10.3969/j.issn.1001-5078.2021.01.001
ZUO J H, JIA Y D. Research progress in wind field inversion of Doppler lidar[J]. Laser & Infrared, 2021, 51(1): 3-8. (in Chinese). doi: 10.3969/j.issn.1001-5078.2021.01.001
|
[9] |
HUFFAKER R M. Laser Doppler detection systems for gas velocity measurement[J]. Applied Optics, 1970, 9(5): 1026-1039.Doi: 10.1364/AO.9.001026.
|
[10] |
PRASAD N S, SIBELL R, VETORINO S, et al. An all-fiber, modular, compact wind lidar for wind sensing and wake vortex applications[C]//2015 SPIE Defense and Security Conference, Baltimore, MD, 2015. SPIE 9465-11. doi: 10.1117/12.2181170
|
[11] |
GENTRY B M, CHEN H L, LI S, et al. Glow: the goddard lidar observatory for winds[C]//2nd International Asia-Pacific Symposium on Remote Sensing of the Atmosphere, Environment, and Space, 2000, Sendai, Japan. doi: 10.1117/12.417062.
|
[12] |
HENDERSON S W, HANNON S M. Advanced coherent lidar system for wind measurements[C]//Optics and Photonics 2005, San Diego, California, United States. Proceedings of SPIE - The International Society for Optical Engineering: Lidar Remote Sensing for Environmental Monitoring VI, 58870I, 2005. SPIE 5887. doi: 10.1117/12.620318.
|
[13] |
CHEN H L, GENTRY B M. Preliminary results of wind measurements by GLOW system in field campaigns[C]//3rd International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space, 2002, Hangzhou, China. doi: 10.1117/12.466524.
|
[14] |
SCHWEMMER G, WILKERSON T, Hancock J, et al. Holographic scanning UV telescope for the tropospheric wind lidar technology experiment[J]. Journal of the Washington Academy of Sciences, 2008, 94(2): 9-15.
|
[15] |
IMAKI M, KOJIMA R, KAMEYAMA S. Development of wavelength locking circuit for 1.53 micron water vapor monitoring coherent differential absorption LIDAR[J]. EPJ Web of Conferences, 2018, 176: 05039.DOI: 10.1051/epjconf/201817605039.
|
[16] |
SAKIMURA T, WATANABE Y, ANDO T, et al. 1.5-μm high-average power laser amplifier using a Er, Yb: glass planar waveguide for coherent Doppler lidar[C]//SPIE Asia-Pacific Remote Sensing, Kyoto, Japan, 2012. SPIE 8526. Lidar Remote Sensing for Environmental Monitoring XIII, 852604. doi: org/10.1117/12.976293
|
[17] |
KAMEYAMA S, SAKIMURA T, WATANABE Y, et al. Wind sensing demonstration of more than 30km measurable range with a 1.5μm coherent Doppler lidar which has the laser amplifier using Er, Yb: glass planar waveguide[C]//SPIE Asia-Pacific Remote Sensing, Kyoto, Japan, 2012. Lidar Remote Sensing for Environmental Monitoring XIII, 85260E, 2012. doi: 10.1117/12.977330
|
[18] |
MIZUTANI K, ISHII S, AOKI M, et al. 2 μm Doppler wind lidar with a Tm: fiber-laser-pumped Ho: YLF laser[J]. Optics Letters, 2018, 43(2): 202-205. doi: 10.1364/OL.43.000202
|
[19] |
ANSMANN A, WANDINGER U, LE RILLE O, et al. Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations[J]. Applied Optics, 2007, 46(26): 6606-6622. doi: 10.1364/AO.46.006606
|
[20] |
郭商勇, 胡雄, 闫召爱, 等. 国外星载激光雷达研究进展[J]. 激光技术, 2016, 40(5): 772-778. doi: 10.7510/jgjs.issn.1001-3806.2016.05.032
GUO S Y, HU X, YAN Z A, et al. Research development of space-borne lidar in foreign countries[J]. Laser Technology, 2016, 40(5): 772-778. (in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2016.05.032
|
[21] |
STRAUME A G, ELFVING A, WERNHAM D, et al. ESA's spaceborne lidar mission ADM-Aeolus; project status and preparations for launch[J]. EPJ Web of Conferences, 2018, 176: 04007.DOI: 10.1051/epjconf/201817604007.
|
[22] |
KUMER V M, REUDER J, FUREVIK B R. A comparison of LiDAR and radiosonde wind measurements[J]. Energy Procedia, 2014, 53: 214-220. doi: 10.1016/j.egypro.2014.07.230.
|
[23] |
李冬梅, 郑永超, 潘静岩, 等. 相干多普勒激光测风雷达系统研究[J]. 光学技术, 2010, 36(6): 880-884. doi: 10.13741/j.cnki.11-1879/o4.2010.06.023
LI D M, ZHENG Y C, PAN J Y, et al. Index system of coherence Doppler wind lidar[J]. Optical Technique, 2010, 36(6): 880-884. (in Chinese)DOI: 10.13741/j.cnki.11-1879/o4.2010.06.023.
|
[24] |
潘静岩, 邬双阳, 刘果, 等. 相干激光测风雷达风场测量技术[J]. 红外与激光工程, 2013, 42(7): 1720-1724. doi: 10.3969/j.issn.1007-2276.2013.07.013
PAN J Y, WU S Y, LIU G, et al. Wind measurement techniques of coherent wind lidar[J]. Infrared and Laser Engineering, 2013, 42(7): 1720-1724. (in Chinese). doi: 10.3969/j.issn.1007-2276.2013.07.013
|
[25] |
LIU J Q, ZHU X P, DIAO W F, et al. All-fiber airborne coherent Doppler lidar to measure wind profiles[J]. EPJ Web of Conferences, 2016, 119: 10002.DOI: 10.1051/epjconf/201611910002.
|
[26] |
金效梅, 朱文越, 刘庆. 激光相干测风技术应用研究[J]. 大气与环境光学学报, 2020, 15(3): 161-173.
JIN X M, ZHU W Y, LIU Q. Application research of laser coherent wind technology[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(3): 161-173. (in Chinese).
|
[27] |
王冲. 1.5 μm波长全光纤多功能相干多普勒测风激光雷达[D]. 合肥: 中国科学技术大学, 2019.
WANG C. 1.5 μm all-fiber multifunction coherent doppler wind lidar[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese).
|
[28] |
SHANGGUAN M J, XIA H Y, WANG C, et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector[J]. Optics Letters, 2017, 42(18): 3541-3544. doi: 10.1364/OL.42.003541
|
[29] |
CHEN F, PENG H R, CHAN P W, et al. Assessing the risk of windshear occurrence at HKIA using rare-event logistic regression[J]. Meteorological Applications, 2020, 27(6): e1962.DOI: 10.1002/met.1962.
|
[30] |
TSE S M, HAGIO M, MAEDA Y. Windshear detection by terminal Doppler weather radar during tropical cyclone mujigae in 2015[J]. Meteorological Applications, 2019, 26(4): 620-631.DOI: 10.1002/met.1789.
|
[31] |
HON K K, CHAN P W. Alerting of hectometric turbulence features at Hong Kong International Airport using a short-range LIDAR[J]. Meteorological Applications, 2020, 27(5): e1945.DOI: 10.1002/met.1945.
|
[32] |
赵林, 杨绪南, 方根深, 等. 超强台风山竹近地层外围风速剖面演变特性现场实测[J]. 空气动力学学报, 2019, 37(1): 43-54. doi: 10.7638/kqdlxxb-2018.0297
ZHAO L, YANG X N, FANG G S, et al. Observation-based study for the evilution of vertical wind profiles in the boundary layer during super typhoon Mangkhut[J]. Acta Aerodynamica Sinica, 2019, 37(1): 43-54. doi: 10.7638/kqdlxxb-2018.0297
|
[33] |
蔡彦枫, 黄增浩, 吴新桥, 等. 基于测风激光雷达的沿海架空输电线路台风观测方法[J]. 南方电网技术, 2020, 14(4): 17-23, 84. doi: 10.13648/j.cnki.issn1674-0629.2020.04.003
CAI Y F, HUANG Z H, WU X Q, et al. Typhoon wind field observation method for overhead transmission lines in coastal area using Doppler lidar[J]. Southern Power System Technology, 2020, 14(4): 17-23, 84. (in Chinese)DOI: 10.13648/j.cnki.issn1674-0629.2020.04.003.
|
[34] |
史文浩, 汤杰, 陈勇航, 等. 多普勒激光雷达探测台风“利奇马”边界层风场精度分析[J]. 热带气象学报, 2020, 36(5): 577-589. doi: 10.16032/j.issn.1004-4965.2020.053
SHI W H, TANG J, CHEN Y H, et al. Study on the accuracy of Doppler wind lidar in measuring the boundary layer wind field of typhoon lekima[J]. Journal of Tropical Meteorology, 2020, 36(5): 577-589. (in Chinese)DOI: 10.16032/j.issn.1004-4965.2020.053.
|
[35] |
TSAI Y S, MIAU J J, YU C M, et al. Lidar observations of the typhoon boundary layer within the outer rainbands[J]. Boundary-Layer Meteorology, 2019, 171(2): 237-255.DOI: 10.1007/s10546-019-00427-6.
|
[36] |
MARUYAMA T, TOMOKIYO E, MAEDA J. Simulation of strong wind field by non-hydrostatic mesoscale model and its applicability for wind hazard assessment of buildings and houses[J]. Hydrological Research Letters, 2010, 4: 40-44.DOI: 10.3178/hrl.4.40.
|
[37] |
应有, 申新贺, 姜婷婷, 等. 基于中微尺度耦合模式的风电场风资源评估方法研究[J]. 可再生能源, 2021, 39(2): 195-200. doi: 10.13941/j.cnki.21-1469/tk.2021.02.009
YING Y, SHEN X H, JIANG T T, et al. Research on wind resource assessment method based on the coupled mesoscale-microscale framework[J]. Renewable Energy Resources, 2021, 39(2): 195-200. (in Chinese)DOI: 10.13941/j.cnki.21-1469/tk.2021.02.009.
|
[38] |
罗勇, 曹鹏, 杨凤志, 等. 中尺度数据在风电项目前期开发过程中的应用现状[J]. 船舶工程, 2020, 42(S2): 233-235, 242. doi: 10.13788/j.cnki.cbgc.2020.S2.045
LUO Y, CAO P, YANG F Z, et al. Application status of mesoscale data in early stage of development process of wind power projects[J]. Ship Engineering, 2020, 42(S2): 233-235, 242. (in Chinese)DOI: 10.13788/j.cnki.cbgc.2020.S2.045.
|
[39] |
ZHANG X L, WEERASURIYA A U, TSE K T. CFD simulation of natural ventilation of a generic building in various incident wind directions: Comparison of turbulence modelling, evaluation methods, and ventilation mechanisms[J]. Energy and Buildings, 2020, 229: 110516. doi: 10.1016/j.enbuild.2020.110516.
|
[40] |
余文林, 柯世堂. 基于WRF与CFD嵌套的台风下大型风力机流场作用与气动力分布[J]. 太阳能学报, 2020, 41(12): 260-269.
YU W L, KE S T. Flow field action and aerodynamic loads distribution for large-scale wind turbine under typhoon based on nesting of wrf and cfd[J]. Acta Energiae Solaris Sinica, 2020, 41(12): 260-269. (in Chinese).
|
[41] |
GARCÍA-SÁNCHEZ C, GORLÉ C. Uncertainty quantification for microscale CFD simulations based on input from mesoscale codes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176: 87-97. doi: 10.1016/j.jweia.2018.03.011.
|
[42] |
唐昂, 傅军, 施红辉, 等. 基于实际峡谷地形风场数值模拟的建筑微观选址[J]. 浙江理工大学学报, 2015, 33(5): 423-428.
TANG A, FU J, SHI H H, et al. Micro building site selection based on numerical simulation of wind field on actual canyon terrain[J]. Journal of Zhejiang Sci-Tech University, 2015, 33(5): 423-428. (in Chinese).
|
[43] |
傅军. 沿海地区山地丘陵风环境与新农村建筑群合理选址技术研究[M]. 浙江理工大学, 2017.
FU J. Field tests and numerical simulation analysis of coastal mountain hilly region wind environment[M]. Zhejiang Sci-Tech University, 2017. ISBN: 978-1-60595-271-0.
|
[44] |
冯林, 傅军, 施红辉, 等. 山体地形中粗糙度对风速的影响研究[J]. 太阳能学报, 2018, 39(12): 3577-3583.
FENG L, FU J, SHI H H, et al. Study on influence of roughness on wind speed in mountain terrain[J]. Acta Energiae Solaris Sinica, 2018, 39(12): 3577-3583. (in Chinese).
|
[45] |
吴强, 傅军, 徐煜佳, 等. 典型沿海丘陵地区风场变化特性实测研究[J]. 建筑热能通风空调, 2021, 40(04): 25-29.
WU Q, FU J, XU Y JI, et al. Experimental study on wind field variation characteristics in typical coastal hilly area[J]. Building Energy & Environment, 2021, 40(04): 25-29.
|