FU J, LI J, WU Q. Application and prospect of Dopplar lidar in the wind field observation[J]. Acta Aerodynamica Sinica, 2021, 39(4): 172−179. DOI: 10.7638/kqdlxxb-2021.0060
Citation: FU J, LI J, WU Q. Application and prospect of Dopplar lidar in the wind field observation[J]. Acta Aerodynamica Sinica, 2021, 39(4): 172−179. DOI: 10.7638/kqdlxxb-2021.0060

Application and prospect of Dopplar lidar in the wind field observation

More Information
  • Received Date: April 18, 2021
  • Revised Date: May 12, 2021
  • Accepted Date: May 15, 2021
  • Available Online: September 08, 2021
  • Doppler lidar plays an important role in the wind field observation in clear sky weather due to its high measurement accuracy and high spatial-temporal resolutions. This paper reviews the research status and application of the laser wind measurement radar technology at home and abroad. Based on the analyses of current problems of the laser wind measurement radar, directions for further research are proposed. This paper also analyzes and summarizes the application of laser wind measurement radar in wind fields and the integration of meso-scale radar measurements and CFD simulations. Especial attention is paid on a multi-scale analysis of wind fields in a coastal area. The results show that the laser wind measurement radar can enhance the capability of wind field data acquisition. To acquire more accurate wind field information, a comprehensive study of the radar measurements and numerical simulations is preferable. Finally, prospects for the technical parameters of laser wind measurement radars are put forward.
  • [1]
    LIU Z L, BARLOW J F, CHAN P W, et al. A review of progress and applications of pulsed Doppler wind LiDARs[J]. Remote Sensing, 2019, 11(21): 2522.DOI: 10.3390/rs11212522.
    [2]
    储玉飞, 刘东, 王珍珠, 等. 多普勒测风激光雷达的基本原理与技术进展[J]. 量子电子学报, 2020, 37(5): 580-600. doi: 10.3969/j.issn.1007-5461.2020.05.007

    CHU Y F, LIU D, WANG Z Z, et al. Basic principle and technical progress of Doppler wind lidar[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580-600. (in Chinese)DOI: 10.3969/j.issn.1007-5461.2020.05.007.
    [3]
    马福民, 陈涌, 杨泽后, 等. 激光多普勒测风技术最新进展[J]. 激光与光电子学进展, 2019, 56(18): 23-34. doi: 10.3788/LOP56.180003

    MA F M, CHEN Y, YANG Z H, et al. Latest development of laser Doppler wind measurement technology[J]. Laser & Optoelectronics Progress, 2019, 56(18): 23-34 (in Chinese)DOI: 10.3788/LOP56.180003.
    [4]
    罗杰, 侯再红, 靖旭, 等. 相干激光测风技术研究进展[J]. 量子电子学报, 2020, 37(2): 129-137. doi: 10.3969/j.issn.1007-5461.2020.02.001

    LUO J, HOU Z H, JING X, et al. Advances in coherent laser wind measurement technology[J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 129-137. (in Chinese)DOI: 10.3969/j.issn.1007-5461.2020.02.001.
    [5]
    周艳宗, 王冲, 刘燕平, 等. 相干测风激光雷达研究进展和应用[J]. 激光与光电子学进展, 2019, 56(2): 9-26.

    ZHOU Y Z, WANG C, LIU Y P, et al. Research progress and application of coherent wind lidar[J]. Laser & Optoelectronics Progress, 2019, 56(2): 9-26. (in Chinese).
    [6]
    RICCIARDELLI F, PIROZZI S, MANDARA A, et al. Accuracy of mean wind climate predicted from historical data through wind LIDAR measurements[J]. Engineering Structures, 2019, 201: 109771. doi: 10.1016/j.engstruct.2019.109771.
    [7]
    GULLÌ D, AVOLIO E, CALIDONNA C R, et al. Two years of wind-lidar measurements at an Italian Mediterranean Coastal Site[J]. Energy Procedia, 2017, 125: 214-220. doi: 10.1016/j.egypro.2017.08.194.
    [8]
    左金辉, 贾豫东. 多普勒激光雷达风场反演研究进展[J]. 激光与红外, 2021, 51(1): 3-8. doi: 10.3969/j.issn.1001-5078.2021.01.001

    ZUO J H, JIA Y D. Research progress in wind field inversion of Doppler lidar[J]. Laser & Infrared, 2021, 51(1): 3-8. (in Chinese). doi: 10.3969/j.issn.1001-5078.2021.01.001
    [9]
    HUFFAKER R M. Laser Doppler detection systems for gas velocity measurement[J]. Applied Optics, 1970, 9(5): 1026-1039.Doi: 10.1364/AO.9.001026.
    [10]
    PRASAD N S, SIBELL R, VETORINO S, et al. An all-fiber, modular, compact wind lidar for wind sensing and wake vortex applications[C]//2015 SPIE Defense and Security Conference, Baltimore, MD, 2015. SPIE 9465-11. doi: 10.1117/12.2181170
    [11]
    GENTRY B M, CHEN H L, LI S, et al. Glow: the goddard lidar observatory for winds[C]//2nd International Asia-Pacific Symposium on Remote Sensing of the Atmosphere, Environment, and Space, 2000, Sendai, Japan. doi: 10.1117/12.417062.
    [12]
    HENDERSON S W, HANNON S M. Advanced coherent lidar system for wind measurements[C]//Optics and Photonics 2005, San Diego, California, United States. Proceedings of SPIE - The International Society for Optical Engineering: Lidar Remote Sensing for Environmental Monitoring VI, 58870I, 2005. SPIE 5887. doi: 10.1117/12.620318.
    [13]
    CHEN H L, GENTRY B M. Preliminary results of wind measurements by GLOW system in field campaigns[C]//3rd International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space, 2002, Hangzhou, China. doi: 10.1117/12.466524.
    [14]
    SCHWEMMER G, WILKERSON T, Hancock J, et al. Holographic scanning UV telescope for the tropospheric wind lidar technology experiment[J]. Journal of the Washington Academy of Sciences, 2008, 94(2): 9-15.
    [15]
    IMAKI M, KOJIMA R, KAMEYAMA S. Development of wavelength locking circuit for 1.53 micron water vapor monitoring coherent differential absorption LIDAR[J]. EPJ Web of Conferences, 2018, 176: 05039.DOI: 10.1051/epjconf/201817605039.
    [16]
    SAKIMURA T, WATANABE Y, ANDO T, et al. 1.5-μm high-average power laser amplifier using a Er, Yb: glass planar waveguide for coherent Doppler lidar[C]//SPIE Asia-Pacific Remote Sensing, Kyoto, Japan, 2012. SPIE 8526. Lidar Remote Sensing for Environmental Monitoring XIII, 852604. doi: org/10.1117/12.976293
    [17]
    KAMEYAMA S, SAKIMURA T, WATANABE Y, et al. Wind sensing demonstration of more than 30km measurable range with a 1.5μm coherent Doppler lidar which has the laser amplifier using Er, Yb: glass planar waveguide[C]//SPIE Asia-Pacific Remote Sensing, Kyoto, Japan, 2012. Lidar Remote Sensing for Environmental Monitoring XIII, 85260E, 2012. doi: 10.1117/12.977330
    [18]
    MIZUTANI K, ISHII S, AOKI M, et al. 2 μm Doppler wind lidar with a Tm: fiber-laser-pumped Ho: YLF laser[J]. Optics Letters, 2018, 43(2): 202-205. doi: 10.1364/OL.43.000202
    [19]
    ANSMANN A, WANDINGER U, LE RILLE O, et al. Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations[J]. Applied Optics, 2007, 46(26): 6606-6622. doi: 10.1364/AO.46.006606
    [20]
    郭商勇, 胡雄, 闫召爱, 等. 国外星载激光雷达研究进展[J]. 激光技术, 2016, 40(5): 772-778. doi: 10.7510/jgjs.issn.1001-3806.2016.05.032

    GUO S Y, HU X, YAN Z A, et al. Research development of space-borne lidar in foreign countries[J]. Laser Technology, 2016, 40(5): 772-778. (in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2016.05.032
    [21]
    STRAUME A G, ELFVING A, WERNHAM D, et al. ESA's spaceborne lidar mission ADM-Aeolus; project status and preparations for launch[J]. EPJ Web of Conferences, 2018, 176: 04007.DOI: 10.1051/epjconf/201817604007.
    [22]
    KUMER V M, REUDER J, FUREVIK B R. A comparison of LiDAR and radiosonde wind measurements[J]. Energy Procedia, 2014, 53: 214-220. doi: 10.1016/j.egypro.2014.07.230.
    [23]
    李冬梅, 郑永超, 潘静岩, 等. 相干多普勒激光测风雷达系统研究[J]. 光学技术, 2010, 36(6): 880-884. doi: 10.13741/j.cnki.11-1879/o4.2010.06.023

    LI D M, ZHENG Y C, PAN J Y, et al. Index system of coherence Doppler wind lidar[J]. Optical Technique, 2010, 36(6): 880-884. (in Chinese)DOI: 10.13741/j.cnki.11-1879/o4.2010.06.023.
    [24]
    潘静岩, 邬双阳, 刘果, 等. 相干激光测风雷达风场测量技术[J]. 红外与激光工程, 2013, 42(7): 1720-1724. doi: 10.3969/j.issn.1007-2276.2013.07.013

    PAN J Y, WU S Y, LIU G, et al. Wind measurement techniques of coherent wind lidar[J]. Infrared and Laser Engineering, 2013, 42(7): 1720-1724. (in Chinese). doi: 10.3969/j.issn.1007-2276.2013.07.013
    [25]
    LIU J Q, ZHU X P, DIAO W F, et al. All-fiber airborne coherent Doppler lidar to measure wind profiles[J]. EPJ Web of Conferences, 2016, 119: 10002.DOI: 10.1051/epjconf/201611910002.
    [26]
    金效梅, 朱文越, 刘庆. 激光相干测风技术应用研究[J]. 大气与环境光学学报, 2020, 15(3): 161-173.

    JIN X M, ZHU W Y, LIU Q. Application research of laser coherent wind technology[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(3): 161-173. (in Chinese).
    [27]
    王冲. 1.5 μm波长全光纤多功能相干多普勒测风激光雷达[D]. 合肥: 中国科学技术大学, 2019.

    WANG C. 1.5 μm all-fiber multifunction coherent doppler wind lidar[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese).
    [28]
    SHANGGUAN M J, XIA H Y, WANG C, et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector[J]. Optics Letters, 2017, 42(18): 3541-3544. doi: 10.1364/OL.42.003541
    [29]
    CHEN F, PENG H R, CHAN P W, et al. Assessing the risk of windshear occurrence at HKIA using rare-event logistic regression[J]. Meteorological Applications, 2020, 27(6): e1962.DOI: 10.1002/met.1962.
    [30]
    TSE S M, HAGIO M, MAEDA Y. Windshear detection by terminal Doppler weather radar during tropical cyclone mujigae in 2015[J]. Meteorological Applications, 2019, 26(4): 620-631.DOI: 10.1002/met.1789.
    [31]
    HON K K, CHAN P W. Alerting of hectometric turbulence features at Hong Kong International Airport using a short-range LIDAR[J]. Meteorological Applications, 2020, 27(5): e1945.DOI: 10.1002/met.1945.
    [32]
    赵林, 杨绪南, 方根深, 等. 超强台风山竹近地层外围风速剖面演变特性现场实测[J]. 空气动力学学报, 2019, 37(1): 43-54. doi: 10.7638/kqdlxxb-2018.0297

    ZHAO L, YANG X N, FANG G S, et al. Observation-based study for the evilution of vertical wind profiles in the boundary layer during super typhoon Mangkhut[J]. Acta Aerodynamica Sinica, 2019, 37(1): 43-54. doi: 10.7638/kqdlxxb-2018.0297
    [33]
    蔡彦枫, 黄增浩, 吴新桥, 等. 基于测风激光雷达的沿海架空输电线路台风观测方法[J]. 南方电网技术, 2020, 14(4): 17-23, 84. doi: 10.13648/j.cnki.issn1674-0629.2020.04.003

    CAI Y F, HUANG Z H, WU X Q, et al. Typhoon wind field observation method for overhead transmission lines in coastal area using Doppler lidar[J]. Southern Power System Technology, 2020, 14(4): 17-23, 84. (in Chinese)DOI: 10.13648/j.cnki.issn1674-0629.2020.04.003.
    [34]
    史文浩, 汤杰, 陈勇航, 等. 多普勒激光雷达探测台风“利奇马”边界层风场精度分析[J]. 热带气象学报, 2020, 36(5): 577-589. doi: 10.16032/j.issn.1004-4965.2020.053

    SHI W H, TANG J, CHEN Y H, et al. Study on the accuracy of Doppler wind lidar in measuring the boundary layer wind field of typhoon lekima[J]. Journal of Tropical Meteorology, 2020, 36(5): 577-589. (in Chinese)DOI: 10.16032/j.issn.1004-4965.2020.053.
    [35]
    TSAI Y S, MIAU J J, YU C M, et al. Lidar observations of the typhoon boundary layer within the outer rainbands[J]. Boundary-Layer Meteorology, 2019, 171(2): 237-255.DOI: 10.1007/s10546-019-00427-6.
    [36]
    MARUYAMA T, TOMOKIYO E, MAEDA J. Simulation of strong wind field by non-hydrostatic mesoscale model and its applicability for wind hazard assessment of buildings and houses[J]. Hydrological Research Letters, 2010, 4: 40-44.DOI: 10.3178/hrl.4.40.
    [37]
    应有, 申新贺, 姜婷婷, 等. 基于中微尺度耦合模式的风电场风资源评估方法研究[J]. 可再生能源, 2021, 39(2): 195-200. doi: 10.13941/j.cnki.21-1469/tk.2021.02.009

    YING Y, SHEN X H, JIANG T T, et al. Research on wind resource assessment method based on the coupled mesoscale-microscale framework[J]. Renewable Energy Resources, 2021, 39(2): 195-200. (in Chinese)DOI: 10.13941/j.cnki.21-1469/tk.2021.02.009.
    [38]
    罗勇, 曹鹏, 杨凤志, 等. 中尺度数据在风电项目前期开发过程中的应用现状[J]. 船舶工程, 2020, 42(S2): 233-235, 242. doi: 10.13788/j.cnki.cbgc.2020.S2.045

    LUO Y, CAO P, YANG F Z, et al. Application status of mesoscale data in early stage of development process of wind power projects[J]. Ship Engineering, 2020, 42(S2): 233-235, 242. (in Chinese)DOI: 10.13788/j.cnki.cbgc.2020.S2.045.
    [39]
    ZHANG X L, WEERASURIYA A U, TSE K T. CFD simulation of natural ventilation of a generic building in various incident wind directions: Comparison of turbulence modelling, evaluation methods, and ventilation mechanisms[J]. Energy and Buildings, 2020, 229: 110516. doi: 10.1016/j.enbuild.2020.110516.
    [40]
    余文林, 柯世堂. 基于WRF与CFD嵌套的台风下大型风力机流场作用与气动力分布[J]. 太阳能学报, 2020, 41(12): 260-269.

    YU W L, KE S T. Flow field action and aerodynamic loads distribution for large-scale wind turbine under typhoon based on nesting of wrf and cfd[J]. Acta Energiae Solaris Sinica, 2020, 41(12): 260-269. (in Chinese).
    [41]
    GARCÍA-SÁNCHEZ C, GORLÉ C. Uncertainty quantification for microscale CFD simulations based on input from mesoscale codes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176: 87-97. doi: 10.1016/j.jweia.2018.03.011.
    [42]
    唐昂, 傅军, 施红辉, 等. 基于实际峡谷地形风场数值模拟的建筑微观选址[J]. 浙江理工大学学报, 2015, 33(5): 423-428.

    TANG A, FU J, SHI H H, et al. Micro building site selection based on numerical simulation of wind field on actual canyon terrain[J]. Journal of Zhejiang Sci-Tech University, 2015, 33(5): 423-428. (in Chinese).
    [43]
    傅军. 沿海地区山地丘陵风环境与新农村建筑群合理选址技术研究[M]. 浙江理工大学, 2017.

    FU J. Field tests and numerical simulation analysis of coastal mountain hilly region wind environment[M]. Zhejiang Sci-Tech University, 2017. ISBN: 978-1-60595-271-0.
    [44]
    冯林, 傅军, 施红辉, 等. 山体地形中粗糙度对风速的影响研究[J]. 太阳能学报, 2018, 39(12): 3577-3583.

    FENG L, FU J, SHI H H, et al. Study on influence of roughness on wind speed in mountain terrain[J]. Acta Energiae Solaris Sinica, 2018, 39(12): 3577-3583. (in Chinese).
    [45]
    吴强, 傅军, 徐煜佳, 等. 典型沿海丘陵地区风场变化特性实测研究[J]. 建筑热能通风空调, 2021, 40(04): 25-29.

    WU Q, FU J, XU Y JI, et al. Experimental study on wind field variation characteristics in typical coastal hilly area[J]. Building Energy & Environment, 2021, 40(04): 25-29.

Catalog

    Article views (1524) PDF downloads (129) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return