ZHANG J, ZHANG G B, CHENG Y Q, et al. A multi-task learning method for large discrepant aerodynamic data[J]. Acta Aerodynamica Sinica, 2022, 40(6): 64−72. DOI: 10.7638/kqdlxxb-2021.0222
Citation: ZHANG J, ZHANG G B, CHENG Y Q, et al. A multi-task learning method for large discrepant aerodynamic data[J]. Acta Aerodynamica Sinica, 2022, 40(6): 64−72. DOI: 10.7638/kqdlxxb-2021.0222

A multi-task learning method for large discrepant aerodynamic data

More Information
  • Received Date: September 05, 2021
  • Revised Date: October 27, 2021
  • Accepted Date: November 09, 2021
  • Available Online: December 27, 2021
  • Compared to traditional aerodynamic modeling methods, the deep-learning-based aerodynamic modeling has higher modeling efficiency and precision. However, previous deep learning methods with fully connected network (FCN) or convolutional neural network (CNN) ignored the influence of input data discrepancies. The shape characteristic parameters and flow state parameters of aircraft are greatly discrepant with different types, which will cause different degrees of impacts on the predicted results. When these two types of parameters are used to predict aerodynamic characteristics together, if we ignore the data discrepancy between them, the accuracy of prediction will be lost. Inspired by the multi-task learning method, we propose Large-Discrepancy Multi-task Learning Network(LD-MTL). Our method firstly divides the dataset into multiple tasks, and then splits the whole learning network into multiple clusters to learn relevant knowledge of the predicted aerodynamic performance according to different tasks. Finally, the relevant knowledge learned from individual clusters are then fused into the final prediction result. Through comparative tests, it is shown that our method can better reflect and quantify the influence of data discrepancies and have a higher prediction accuracy when modeling with largely discrepant aerodynamic data.
  • [1]
    ZHANG Y, SUNG W J, MAVRIS D N. Application of convolutional neural network to predict airfoil lift coefficient[C]//2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, Florida. Reston, Virginia: AIAA, 2018. doi: 10.2514/6.2018-1903
    [2]
    PATANKAR S V. Numerical heat transfer and fluid flow[M]. CRC Press, 2018. doi: 10.1201/9781482234213
    [3]
    陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001.
    [4]
    张涵信, 庄逢甘. 与物理分析相结合的计算流体力学[C]//钱学森技术科学思想与力学论文集, 2001: 138-153.
    [5]
    乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4): 663-674. doi: 10.7638/kqdlxxb-2018.0267

    QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica, 2019, 37(4): 663-674 (in Chinese). doi: 10.7638/kqdlxxb-2018.0267
    [6]
    许晨舟, 乔建领, 聂晗, 等. 基于非结构网格求解器的CHN-T1标模气动特性计算研究[J]. 空气动力学学报, 2019, 37(2): 291-300. doi: 10.7638/kqdlxxb-2018.0198

    XU C Z, QIAO J L, NIE H, et al. Numerical investigation on aerodynamic performance of a standard model CHN-T1 using an unstructured flow solver[J]. Acta Aerodynamica Sinica, 2019, 37(2): 291-300. (in Chinese) doi: 10.7638/kqdlxxb-2018.0198
    [7]
    韩忠华, 张瑜, 许晨舟, 等. 基于代理模型的大型民机机翼气动优化设计[J]. 航空学报, 2019, 40(1): 522398. doi: 10.7527/S1000-6893.2018.22398

    HAN Z H, ZHANG Y, XU C Z, et al. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522398. (in Chinese) doi: 10.7527/S1000-6893.2018.22398
    [8]
    WHITE C, USHIZIMA D, FARHAT C. Neural networks predict fluid dynamics solutions from tiny datasets[R/OL]. arXiv: 1902.00091, 2019. https://arxiv.org/pdf/1902.00091v1.pdf
    [9]
    HU L W, ZHANG J, XIANG Y, et al. Neural networks-based aerodynamic data modeling: a comprehensive review[J]. IEEE Access, 2020, 8: 90805-90823. DOI: 10.1109/ACCESS.2020.2993562
    [10]
    LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539
    [11]
    ZHANG Z J, DURAISAMY K. Machine learning methods for data-driven turbulence modeling[C]//22nd AIAA Computational Fluid Dynamics Conference, Dallas, TX. Reston, Virginia: AIAA, 2015 doi: 10.2514/6.2015-2460
    [12]
    LI J H, LI B, XU J Z, et al. Fully connected network-based intra prediction for image coding[J]. IEEE Transactions on Image Processing, 2018, 27(7): 3236-3247. DOI: 10.1109/TIP.2018.2817044
    [13]
    PARISH E J, DURAISAMY K. A paradigm for data-driven predictive modeling using field inversion and machine learning[J]. Journal of Computational Physics, 2016, 305: 758-774. DOI: 10.1016/j.jcp.2015.11.012
    [14]
    MARCATO A, BOCCARDO G, MARCHISIO D L. A computational workflow to study particle transport in porous media: coupling CFD and deep learning[M]. Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2020: 1759-1764. doi: 10.1016/b978-0-12-823377-1.50294-9
    [15]
    何磊, 钱炜祺, 汪清, 等. 机器学习方法在气动特性建模中的应用[J]. 空气动力学学报, 2019, 37(3): 470-479. doi: 10.7638/kqdlxxb-2019.0033

    HE L, QIAN W Q, WANG Q, et al. Applications of machine learning for aerodynamic characteristics modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3): 470-479. (in Chinese) doi: 10.7638/kqdlxxb-2019.0033
    [16]
    何磊, 张显才, 钱炜祺, 等. 基于长短时记忆神经网络的非定常气动力建模方法[J]. 飞行力学, 2021, 39(5): 8-12.

    HE L, ZHANG X C, QIAN W Q, et al. Unsteady aerodynamics modeling method based on long short-term memory neural network[J]. Flight Dynamics, 2021, 39(5): 8-12. (in Chinese)
    [17]
    陈海, 钱炜祺, 何磊. 基于深度学习的翼型气动系数预测[J]. 空气动力学学报, 2018, 36(2): 294-299. doi: 10.7638/kqdlxxb-2017.0098

    CHEN H, QIAN W Q, HE L. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica, 2018, 36(2): 294-299. (in Chinese) doi: 10.7638/kqdlxxb-2017.0098
    [18]
    MÜLLER S, MILANO M, KOUMOUTSAKOS P. Application of machine learning algorithms to flow modeling and optimization[R/OL]. Swiss Federal Institute of Technology: Center for Turbulence Research Annual Research Briefs, 1999. https://www.cse-lab.ethz.ch/wp-content/papercite-data/pdf/mueller1999a.pdf
    [19]
    YILMAZ E, GERMAN B. A convolutional neural network approach to training predictors for airfoil performance[C]//18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Denver, Colorado. Reston, Virginia: AIAA, 2017. AIAA 2017-3660. doi: 10.2514/6.2017-3660
    [20]
    HU L W, XIANG Y, ZHAN J, et al. Aerodynamic data predictions based on multi-task learning[R/OL]. arXiv: 2010.09475, 2020. https://arxiv.org/pdf/2010.09475v1.pdf
    [21]
    COLLOBERT R, WESTON J. A unified architecture for natural language processing: deep neural networks with multitask learning[C]//25th international conference on Machine learning - ICML '08, Helsinki, Finland. New York: ACM Press, 2008: 160-167. doi: 10.1145/1390156.1390177
    [22]
    DENG L, HINTON G, KINGSBURY B. New types of deep neural network learning for speech recognition and related applications: an overview[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada. IEEE, 2013: 8599-8603. doi: 10.1109/ICASSP.2013.6639344
    [23]
    GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile. IEEE, 2015: 1440-1448. doi: 10.1109/ICCV.2015.169
    [24]
    WHITE C, USHIZIMA D, FARHAT C. Fast neural network predictions from constrained aerodynamics datasets[C]//Proc of the AIAA Scitech 2020 Forum, Orlando, FL. Reston, Virginia: AIAA, 2020 doi: 10.2514/6.2020-0364
    [25]
    DAKUA S P. Performance divergence with data discrepancy: a review[J]. Artificial Intelligence Review, 2013, 40(4): 429-455. DOI: 10.1007/s10462-011-9289-8
    [26]
    ZHANG L B, HUANG S L, LIU W, et al. Learning a mixture of granularity-specific experts for fine-grained categorization[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South). IEEE, 2019: 8330-8339. doi: 10.1109/ICCV. 2019.00842 https://openaccess.thecvf.com/content_ICCV_2019/papers/Zhang_Learning_a_Mixture_of_Granularity-Specific_Experts_for_Fine-Grained_Categorization_ICCV_2019_paper.pdf
    [27]
    UIUC Applied Aerodynamics Group. UIUC airfoil coordinates database[EB/OL]. https://m-selig.ae.illinois.edu/ads/coord_database.html
  • Cited by

    Periodical cited type(1)

    1. 刘霞,冯文晖,连峰,张帅宇,张光华,孔轶男,韩崇昭. 基于物理信息神经网络的气动数据融合方法. 空气动力学学报. 2023(08): 87-96 . 本站查看

    Other cited types(3)

Catalog

    Article views (378) PDF downloads (51) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return