Citation: | ZHANG J, ZHANG G B, CHENG Y Q, et al. A multi-task learning method for large discrepant aerodynamic data[J]. Acta Aerodynamica Sinica, 2022, 40(6): 64−72. DOI: 10.7638/kqdlxxb-2021.0222 |
[1] |
ZHANG Y, SUNG W J, MAVRIS D N. Application of convolutional neural network to predict airfoil lift coefficient[C]//2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, Florida. Reston, Virginia: AIAA, 2018. doi: 10.2514/6.2018-1903
|
[2] |
PATANKAR S V. Numerical heat transfer and fluid flow[M]. CRC Press, 2018. doi: 10.1201/9781482234213
|
[3] |
陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001.
|
[4] |
张涵信, 庄逢甘. 与物理分析相结合的计算流体力学[C]//钱学森技术科学思想与力学论文集, 2001: 138-153.
|
[5] |
乔建领, 韩忠华, 丁玉临, 等. 基于广义Burgers方程的超声速客机远场声爆高精度预测方法[J]. 空气动力学学报, 2019, 37(4): 663-674. doi: 10.7638/kqdlxxb-2018.0267
QIAO J L, HAN Z H, DING Y L, et al. Sonic boom prediction method for supersonic transports based on augmented Burgers equation[J]. Acta Aerodynamica Sinica, 2019, 37(4): 663-674 (in Chinese). doi: 10.7638/kqdlxxb-2018.0267
|
[6] |
许晨舟, 乔建领, 聂晗, 等. 基于非结构网格求解器的CHN-T1标模气动特性计算研究[J]. 空气动力学学报, 2019, 37(2): 291-300. doi: 10.7638/kqdlxxb-2018.0198
XU C Z, QIAO J L, NIE H, et al. Numerical investigation on aerodynamic performance of a standard model CHN-T1 using an unstructured flow solver[J]. Acta Aerodynamica Sinica, 2019, 37(2): 291-300. (in Chinese) doi: 10.7638/kqdlxxb-2018.0198
|
[7] |
韩忠华, 张瑜, 许晨舟, 等. 基于代理模型的大型民机机翼气动优化设计[J]. 航空学报, 2019, 40(1): 522398. doi: 10.7527/S1000-6893.2018.22398
HAN Z H, ZHANG Y, XU C Z, et al. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522398. (in Chinese) doi: 10.7527/S1000-6893.2018.22398
|
[8] |
WHITE C, USHIZIMA D, FARHAT C. Neural networks predict fluid dynamics solutions from tiny datasets[R/OL]. arXiv: 1902.00091, 2019. https://arxiv.org/pdf/1902.00091v1.pdf
|
[9] |
HU L W, ZHANG J, XIANG Y, et al. Neural networks-based aerodynamic data modeling: a comprehensive review[J]. IEEE Access, 2020, 8: 90805-90823. DOI: 10.1109/ACCESS.2020.2993562
|
[10] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539
|
[11] |
ZHANG Z J, DURAISAMY K. Machine learning methods for data-driven turbulence modeling[C]//22nd AIAA Computational Fluid Dynamics Conference, Dallas, TX. Reston, Virginia: AIAA, 2015 doi: 10.2514/6.2015-2460
|
[12] |
LI J H, LI B, XU J Z, et al. Fully connected network-based intra prediction for image coding[J]. IEEE Transactions on Image Processing, 2018, 27(7): 3236-3247. DOI: 10.1109/TIP.2018.2817044
|
[13] |
PARISH E J, DURAISAMY K. A paradigm for data-driven predictive modeling using field inversion and machine learning[J]. Journal of Computational Physics, 2016, 305: 758-774. DOI: 10.1016/j.jcp.2015.11.012
|
[14] |
MARCATO A, BOCCARDO G, MARCHISIO D L. A computational workflow to study particle transport in porous media: coupling CFD and deep learning[M]. Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2020: 1759-1764. doi: 10.1016/b978-0-12-823377-1.50294-9
|
[15] |
何磊, 钱炜祺, 汪清, 等. 机器学习方法在气动特性建模中的应用[J]. 空气动力学学报, 2019, 37(3): 470-479. doi: 10.7638/kqdlxxb-2019.0033
HE L, QIAN W Q, WANG Q, et al. Applications of machine learning for aerodynamic characteristics modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3): 470-479. (in Chinese) doi: 10.7638/kqdlxxb-2019.0033
|
[16] |
何磊, 张显才, 钱炜祺, 等. 基于长短时记忆神经网络的非定常气动力建模方法[J]. 飞行力学, 2021, 39(5): 8-12.
HE L, ZHANG X C, QIAN W Q, et al. Unsteady aerodynamics modeling method based on long short-term memory neural network[J]. Flight Dynamics, 2021, 39(5): 8-12. (in Chinese)
|
[17] |
陈海, 钱炜祺, 何磊. 基于深度学习的翼型气动系数预测[J]. 空气动力学学报, 2018, 36(2): 294-299. doi: 10.7638/kqdlxxb-2017.0098
CHEN H, QIAN W Q, HE L. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica, 2018, 36(2): 294-299. (in Chinese) doi: 10.7638/kqdlxxb-2017.0098
|
[18] |
MÜLLER S, MILANO M, KOUMOUTSAKOS P. Application of machine learning algorithms to flow modeling and optimization[R/OL]. Swiss Federal Institute of Technology: Center for Turbulence Research Annual Research Briefs, 1999. https://www.cse-lab.ethz.ch/wp-content/papercite-data/pdf/mueller1999a.pdf
|
[19] |
YILMAZ E, GERMAN B. A convolutional neural network approach to training predictors for airfoil performance[C]//18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Denver, Colorado. Reston, Virginia: AIAA, 2017. AIAA 2017-3660. doi: 10.2514/6.2017-3660
|
[20] |
HU L W, XIANG Y, ZHAN J, et al. Aerodynamic data predictions based on multi-task learning[R/OL]. arXiv: 2010.09475, 2020. https://arxiv.org/pdf/2010.09475v1.pdf
|
[21] |
COLLOBERT R, WESTON J. A unified architecture for natural language processing: deep neural networks with multitask learning[C]//25th international conference on Machine learning - ICML '08, Helsinki, Finland. New York: ACM Press, 2008: 160-167. doi: 10.1145/1390156.1390177
|
[22] |
DENG L, HINTON G, KINGSBURY B. New types of deep neural network learning for speech recognition and related applications: an overview[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada. IEEE, 2013: 8599-8603. doi: 10.1109/ICASSP.2013.6639344
|
[23] |
GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile. IEEE, 2015: 1440-1448. doi: 10.1109/ICCV.2015.169
|
[24] |
WHITE C, USHIZIMA D, FARHAT C. Fast neural network predictions from constrained aerodynamics datasets[C]//Proc of the AIAA Scitech 2020 Forum, Orlando, FL. Reston, Virginia: AIAA, 2020 doi: 10.2514/6.2020-0364
|
[25] |
DAKUA S P. Performance divergence with data discrepancy: a review[J]. Artificial Intelligence Review, 2013, 40(4): 429-455. DOI: 10.1007/s10462-011-9289-8
|
[26] |
ZHANG L B, HUANG S L, LIU W, et al. Learning a mixture of granularity-specific experts for fine-grained categorization[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South). IEEE, 2019: 8330-8339. doi: 10.1109/ICCV. 2019.00842 https://openaccess.thecvf.com/content_ICCV_2019/papers/Zhang_Learning_a_Mixture_of_Granularity-Specific_Experts_for_Fine-Grained_Categorization_ICCV_2019_paper.pdf
|
[27] |
UIUC Applied Aerodynamics Group. UIUC airfoil coordinates database[EB/OL]. https://m-selig.ae.illinois.edu/ads/coord_database.html
|
1. |
刘霞,冯文晖,连峰,张帅宇,张光华,孔轶男,韩崇昭. 基于物理信息神经网络的气动数据融合方法. 空气动力学学报. 2023(08): 87-96 .
![]() |