REN K, GAO C Q, ZHANG W W. Model-free adaptive control of shock buffet flow over an airfoil[J]. Acta Aerodynamica Sinica, 2021, 39(6): 149−155. DOI: 10.7638/kqdlxxb-2021.0297
Citation: REN K, GAO C Q, ZHANG W W. Model-free adaptive control of shock buffet flow over an airfoil[J]. Acta Aerodynamica Sinica, 2021, 39(6): 149−155. DOI: 10.7638/kqdlxxb-2021.0297

Model-free adaptive control of shock buffet flow over an airfoil

More Information
  • Received Date: September 26, 2021
  • Revised Date: October 07, 2021
  • Accepted Date: October 17, 2021
  • Available Online: December 29, 2021
  • Due to the existence of various disturbances and uncertainties in complex flow environments, the design of flow control systems needs to consider these uncertainties and to adjust the control law automatically to adapt to random and abrupt disturbances. The closed-loop optimal control based on low-order linear models, which is widely used at present, can obtain the predetermined control effect with a small amount of control input, but the modelling accuracy and the unmodeled dynamics of the reduced-order models can greatly limit the adaptive ability of such control strategies. In this study, aiming at the shock buffet problem of airfoils in transonic flow, a model-free adaptive control (MFAC) based on the data-driven method was carried out to eliminate the fluctuating load caused by the shock buffet in different freestream states. The control uses the unsteady Reynolds Average Navier-Stokes (URANS) method for the flow field simulation, the trailing-edge flap as the actuator, and the lift coefficient as the feedback signal. When the flow state changes, the data-driven MFAC uses the input and output data to convert the flow system into a dynamic linearized data model online and minimizes the performance index to obtain the control law, to make the system automatically work in the optimal or close to the optimal state. The simulation results show that MFAC is better than existing open-loop control and proportional control strategies, and can completely suppress the buffet load even if the freestream state changes.
  • [1]
    SCOTT COLLIS S, JOSLIN R D, SEIFERT A, et al. Issues in active flow control: theory, control, simulation, and experiment[J]. Progress in Aerospace Sciences, 2004, 40(4-5): 237-289.https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/pas-flow-ctrl.pdf DOI: 10.1016/j.paerosci.2004.06.001
    [2]
    许春晓. 壁湍流相干结构和减阻控制机理[J]. 力学进展, 2015, 45: 111-140.

    XU C X. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45: 111-140. (in Chinese)doi: 10.6052/1000-0992-15-006
    [3]
    WU C J, WANG L, WU J Z. Suppression of the von Kármán vortex street behind a circular cylinder by a travelling wave generated by a flexible surface[J]. Journal of Fluid Mechanics, 2007, 574: 365-391. DOI: 10.1017/s0022112006004150
    [4]
    周方奇, 杨党国, 王显圣, 等. 前缘直板扰流对高速空腔的降噪效果分析[J]. 航空学报, 2018, 39(4): 121812.

    ZHOU F Q, YANG D G, WANG X S, et al. Effect of leading edge plate on high speed cavity noise control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 121812. (in Chinese)doi: 10.7527/S1000-6893.2017.21812
    [5]
    洪俊武, 陈晓东, 张玉伦, 等. 主动流动控制技术的初步数值研究[J]. 空气动力学学报, 2005, 23(4): 402-407. doi: 10.3969/j.issn.0258-1825.2005.04.002

    HONG J W, CHEN X D, ZHANG Y L, et al. The primary numerical research of active control technology in flow[J]. Acta Aerodynamica Sinica, 2005, 23(4): 402-407. (in Chinese) doi: 10.3969/j.issn.0258-1825.2005.04.002
    [6]
    YAO W, JAIMAN R K. Feedback control of unstable flow and vortex-induced vibration using the eigensystem realization algorithm[J]. Journal of Fluid Mechanics, 2017, 827: 394-414. DOI: 10.1017/jfm.2017.470
    [7]
    FLINOIS T L B, MORGANS A S. Feedback control of unstable flows: a direct modelling approach using the Eigensystem Realisation Algorithm[J]. Journal of Fluid Mechanics, 2016, 793: 41-78. DOI: 10.1017/jfm.2016.111
    [8]
    LECLERCQ C, DEMOURANT F, POUSSOT-VASSAL C, et al. Linear iterative method for closed-loop control of quasiperiodic flows[J]. Journal of Fluid Mechanics, 2019, 868: 26-65. DOI: 10.1017/jfm.2019.112
    [9]
    HENNINGSON D S, ÅKERVIK E. The use of global modes to understand transition and perform flow control[J]. Physics of Fluids, 2008, 20(3): 031302. DOI: 10.1063/1.2832773
    [10]
    GAO C Q, ZHANG W W, KOU J Q, et al. Active control of transonic buffet flow[J]. Journal of Fluid Mechanics, 2017, 824: 312-351. DOI: 10.1017/jfm.2017.344
    [11]
    DADFAR R, HANIFI A, HENNINGSON D S. Control of instabilities in an unswept wing boundary layer[J]. AIAA Journal, 2018, 56(5): 1750-1759. DOI: 10.2514/1.j056415
    [12]
    HOU Z S, WANG Z. From model-based control to data-driven control: Survey, classification and perspective[J]. Information Sciences, 2013, 235: 3-35. DOI: 10.1016/j.ins.2012.07.014
    [13]
    REN F, WANG C L, TANG H. Active control of vortex-induced vibration of a circular cylinder using machine learning[J]. Physics of Fluids, 2019, 31(9): 093601. DOI: 10.1063/1.5115258
    [14]
    ZHOU Y, FAN D W, ZHANG B F, et al. Artificial intelligence control of a turbulent jet[J]. Journal of Fluid Mechanics, 2020, 897: A27. DOI: 10.1017/jfm.2020.392
    [15]
    ZHENG C D, JI T W, XIE F F, et al. From active learning to deep reinforcement learning: Intelligent active flow control in suppressing vortex-induced vibration[J]. Physics of Fluids, 2021, 33(6): 063607. DOI: 10.1063/5.0052524
    [16]
    DOWELL E H, CRAWLEY E F, CURTISS JR H C, et al. A modern course in aeroelasticity[M]. Springer Netherlands, 2004. doi: 10.1007/1-4020-2106-2
    [17]
    董圣华, 史爱明, 叶正寅, 等. 超临界翼型跨声速抖振 CFD 计算和 POD 分析[J]. 空气动力学学报, 2015, 33(4): 481-487. doi: 10.7638/kqdlxxb-2013.0100

    DONG S H, SHI A M, YE Z Y, et al. CFD computation and POD analysis for transonic buffet on a supercritical airfoil[J]. Acta Aerodynamica Sinica, 2015, 33(4): 481-487. (in Chinese)doi: 10.7638/kqdlxxb-2013.0100
    [18]
    王旭, 任凯, 高传强, 等. 跨声速抖振锁频状态下的自适应控制方法[J]. 空气动力学学报, 2020, 38(5): 1011-1016.

    WANG X, REN K, GAO C Q, et al. Adaptive control method for frequency lock-in in transonic buffet flow[J]. Acta Aerodynamica Sinica, 2020, 38(5): 1011-1016. (in Chinese)doi: 10.7638/kqdlxxbG2020.0085
    [19]
    SMITH A N, BABINSKY H, FULKER J L, et al. Shock wave/ boundary-layer interaction control using streamwise slots in transonic flows[J]. Journal of Aircraft, 2004, 41(3): 540-546. DOI: 10.2514/1.11479
    [20]
    田云, 刘沛清, 彭健. 激波控制鼓包提高翼型跨声速抖振边界[J]. 航空学报, 2011, 32(8): 1421-1428.

    TIAN Y, LIU P Q, PENG J. Using shock control bump to improve transonic buffet boundary of airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1421-1428. (in Chinese)doi: 11-1929/V.20110419.1702.005
    [21]
    HUANG J B, XIAO Z X, LIU J, et al. Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES[J]. Science China Physics, Mechanics and Astronomy, 2012, 55(2): 260-271. DOI: 10.1007/s11433-011-4601-9
    [22]
    高传强. 跨声速复杂气动弹性问题的诱发机理及控制研究[D]. 西安: 西北工业大学, 2018.
    [23]
    张伟伟, 高传强, 叶正寅. 复杂跨声速气动弹性现象及其机理分析[J]. 科学通报, 2018, 63(12): 1095-1110. doi: 10.1360/N972018-00151

    ZHANG W W, GAO C Q, YE Z Y. The complex transonic aeroelastic phenomena and it's mechanisms[J]. Chinese Science Bulletin, 2018, 63(12): 1095-1110. (in Chinese)doi: 10.1360/N972018-00151
    [24]
    WANG G, MIAN H H, YE Z Y, et al. Improved point selection method for hybrid-unstructured mesh deformation using radial basis functions[J]. AIAA Journal, 2014, 53(4): 1016-1025. DOI: 10.2514/1.J053304
    [25]
    DOERFFER P, HIRSCH C, DUSSAUGE J P, et al. NACA0012 with aileron (marianna braza)[M]//Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 101-131. doi: 10.1007/978-3-642-03004-8_4
    [26]
    侯忠生, 金尚泰. 无模型自适应控制: 理论与应用[M]. 北京: 科学出版社, 2013.
    [27]
    高传强, 张伟伟, 叶正寅. 基于谐振舵面的跨声速抖振抑制探究[J]. 航空学报, 2015, 36(10): 3208-3217.

    GAO C Q, ZHANG W W, YE Z Y. Study on transonic buffet suppression with flapping rudder[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3208-3217. (in Chinese)doi: 10.7527/S1000-6893.2015.0034
    [28]
    GAO C Q, ZHANG W W, YE Z Y. Numerical study on closed-loop control of transonic buffet suppression by trailing edge flap[J]. Computers & Fluids, 2016, 132: 32-45. DOI: 10.1016/j.compfluid.2016.03.031
  • Related Articles

    [1]WANG Ze, WANG Ziyi, WANG Xu, SONG Shufang, ZHANG Weiwei. A data-driven aeroheating prediction model[J]. ACTA AERODYNAMICA SINICA, 2023, 41(5): 12-19. DOI: 10.7638/kqdlxxb-2022.0010
    [2]ZENG Lingwei, WANG Hanfeng, PENG Si. Flow control around a three dimensional square cylinder with free-end slot suction[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1093-1101. DOI: 10.7638/kqdlxxb-2018.0205
    [3]WANG Xu, REN Kai, GAO Chuanqiang, KONG Yinan, ZHANG Weiwei. Adaptive control method for frequency lock-in in transonic buffet flow[J]. ACTA AERODYNAMICA SINICA, 2020, 38(5): 1011-1016. DOI: 10.7638/kqdlxxb-2020.0085
    [4]ZHU Xiaojun, LI Feng, OU Dongbin, ZHOU Kai, LU Zhiliang. Numerical simulation of flow control in lift-increase effect using air-blowing[J]. ACTA AERODYNAMICA SINICA, 2020, 38(1): 66-72. DOI: 10.7638/kqdlxxb-2018.0056
    [5]Yu Jinge, Niu Zhongguo, Liang Hua, Sun Nan, Liu Jie. Experimental investigation on delta wing flow control by plasma[J]. ACTA AERODYNAMICA SINICA, 2017, 35(2): 305-309. DOI: 10.7638/kqdlxxb-2015.0158
    [6]Sun Shengshu, Gu Yunsong, Chen Yongliang, Zhao Xiong. Separation flow control on free-wing with beveled-slit-synthetic-jet at low Reynolds numbers[J]. ACTA AERODYNAMICA SINICA, 2017, 35(2): 277-282. DOI: 10.7638/kqdlxxb-2016.0165
    [7]Zhao Zhenshan, Ma Xiaoguang, Du Yu. Numerical simulation research of a Bump inlet flow control[J]. ACTA AERODYNAMICA SINICA, 2016, 34(4): 476-481. DOI: 10.7638/kqdlxxb-2014.0111
    [8]Li Peng, Ming Xiao. Fluorescence oil-film technique and its application in flow control[J]. ACTA AERODYNAMICA SINICA, 2015, 33(1): 142-147. DOI: 10.7638/kqdlxxb-2013.0057
    [9]LI Liang, LI Xiaowei. Numerical simulation of gusts over multi-element airfoils and their flow control[J]. ACTA AERODYNAMICA SINICA, 2013, 31(6): 710-717.
    [10]YU Yan-ze, JIANG Zeng-yan, CHEN bao, . The investigation of flow control and drag reduction mechanism for transport airplane aft-body[J]. ACTA AERODYNAMICA SINICA, 2011, 29(5): 640-644. DOI: 130.25/j.issn.0258-1825.2011.05.017
  • Cited by

    Periodical cited type(3)

    1. 贾天昊,高超,王玉帅,许和勇. 零质量射流控制翼型跨声速激波抖振特性. 空气动力学学报. 2025(03): 29-41 . 本站查看
    2. 豆子皓,吴军强,高传强,张伟伟. CHN-T2标模跨声速抖振特性及雷诺数效应研究. 空气动力学学报. 2024(08): 93-107 . 本站查看
    3. 徐通福,李秀英. 基于控制器动态线性化的数据驱动ILC. 火力与指挥控制. 2023(05): 33-38 .

    Other cited types(0)

Catalog

    Article views (327) PDF downloads (51) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return