Citation: | REN K, GAO C Q, ZHANG W W. Model-free adaptive control of shock buffet flow over an airfoil[J]. Acta Aerodynamica Sinica, 2021, 39(6): 149−155. DOI: 10.7638/kqdlxxb-2021.0297 |
[1] |
SCOTT COLLIS S, JOSLIN R D, SEIFERT A, et al. Issues in active flow control: theory, control, simulation, and experiment[J]. Progress in Aerospace Sciences, 2004, 40(4-5): 237-289.https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/pas-flow-ctrl.pdf DOI: 10.1016/j.paerosci.2004.06.001
|
[2] |
许春晓. 壁湍流相干结构和减阻控制机理[J]. 力学进展, 2015, 45: 111-140.
XU C X. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45: 111-140. (in Chinese)doi: 10.6052/1000-0992-15-006
|
[3] |
WU C J, WANG L, WU J Z. Suppression of the von Kármán vortex street behind a circular cylinder by a travelling wave generated by a flexible surface[J]. Journal of Fluid Mechanics, 2007, 574: 365-391. DOI: 10.1017/s0022112006004150
|
[4] |
周方奇, 杨党国, 王显圣, 等. 前缘直板扰流对高速空腔的降噪效果分析[J]. 航空学报, 2018, 39(4): 121812.
ZHOU F Q, YANG D G, WANG X S, et al. Effect of leading edge plate on high speed cavity noise control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 121812. (in Chinese)doi: 10.7527/S1000-6893.2017.21812
|
[5] |
洪俊武, 陈晓东, 张玉伦, 等. 主动流动控制技术的初步数值研究[J]. 空气动力学学报, 2005, 23(4): 402-407. doi: 10.3969/j.issn.0258-1825.2005.04.002
HONG J W, CHEN X D, ZHANG Y L, et al. The primary numerical research of active control technology in flow[J]. Acta Aerodynamica Sinica, 2005, 23(4): 402-407. (in Chinese) doi: 10.3969/j.issn.0258-1825.2005.04.002
|
[6] |
YAO W, JAIMAN R K. Feedback control of unstable flow and vortex-induced vibration using the eigensystem realization algorithm[J]. Journal of Fluid Mechanics, 2017, 827: 394-414. DOI: 10.1017/jfm.2017.470
|
[7] |
FLINOIS T L B, MORGANS A S. Feedback control of unstable flows: a direct modelling approach using the Eigensystem Realisation Algorithm[J]. Journal of Fluid Mechanics, 2016, 793: 41-78. DOI: 10.1017/jfm.2016.111
|
[8] |
LECLERCQ C, DEMOURANT F, POUSSOT-VASSAL C, et al. Linear iterative method for closed-loop control of quasiperiodic flows[J]. Journal of Fluid Mechanics, 2019, 868: 26-65. DOI: 10.1017/jfm.2019.112
|
[9] |
HENNINGSON D S, ÅKERVIK E. The use of global modes to understand transition and perform flow control[J]. Physics of Fluids, 2008, 20(3): 031302. DOI: 10.1063/1.2832773
|
[10] |
GAO C Q, ZHANG W W, KOU J Q, et al. Active control of transonic buffet flow[J]. Journal of Fluid Mechanics, 2017, 824: 312-351. DOI: 10.1017/jfm.2017.344
|
[11] |
DADFAR R, HANIFI A, HENNINGSON D S. Control of instabilities in an unswept wing boundary layer[J]. AIAA Journal, 2018, 56(5): 1750-1759. DOI: 10.2514/1.j056415
|
[12] |
HOU Z S, WANG Z. From model-based control to data-driven control: Survey, classification and perspective[J]. Information Sciences, 2013, 235: 3-35. DOI: 10.1016/j.ins.2012.07.014
|
[13] |
REN F, WANG C L, TANG H. Active control of vortex-induced vibration of a circular cylinder using machine learning[J]. Physics of Fluids, 2019, 31(9): 093601. DOI: 10.1063/1.5115258
|
[14] |
ZHOU Y, FAN D W, ZHANG B F, et al. Artificial intelligence control of a turbulent jet[J]. Journal of Fluid Mechanics, 2020, 897: A27. DOI: 10.1017/jfm.2020.392
|
[15] |
ZHENG C D, JI T W, XIE F F, et al. From active learning to deep reinforcement learning: Intelligent active flow control in suppressing vortex-induced vibration[J]. Physics of Fluids, 2021, 33(6): 063607. DOI: 10.1063/5.0052524
|
[16] |
DOWELL E H, CRAWLEY E F, CURTISS JR H C, et al. A modern course in aeroelasticity[M]. Springer Netherlands, 2004. doi: 10.1007/1-4020-2106-2
|
[17] |
董圣华, 史爱明, 叶正寅, 等. 超临界翼型跨声速抖振 CFD 计算和 POD 分析[J]. 空气动力学学报, 2015, 33(4): 481-487. doi: 10.7638/kqdlxxb-2013.0100
DONG S H, SHI A M, YE Z Y, et al. CFD computation and POD analysis for transonic buffet on a supercritical airfoil[J]. Acta Aerodynamica Sinica, 2015, 33(4): 481-487. (in Chinese)doi: 10.7638/kqdlxxb-2013.0100
|
[18] |
王旭, 任凯, 高传强, 等. 跨声速抖振锁频状态下的自适应控制方法[J]. 空气动力学学报, 2020, 38(5): 1011-1016.
WANG X, REN K, GAO C Q, et al. Adaptive control method for frequency lock-in in transonic buffet flow[J]. Acta Aerodynamica Sinica, 2020, 38(5): 1011-1016. (in Chinese)doi: 10.7638/kqdlxxbG2020.0085
|
[19] |
SMITH A N, BABINSKY H, FULKER J L, et al. Shock wave/ boundary-layer interaction control using streamwise slots in transonic flows[J]. Journal of Aircraft, 2004, 41(3): 540-546. DOI: 10.2514/1.11479
|
[20] |
田云, 刘沛清, 彭健. 激波控制鼓包提高翼型跨声速抖振边界[J]. 航空学报, 2011, 32(8): 1421-1428.
TIAN Y, LIU P Q, PENG J. Using shock control bump to improve transonic buffet boundary of airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1421-1428. (in Chinese)doi: 11-1929/V.20110419.1702.005
|
[21] |
HUANG J B, XIAO Z X, LIU J, et al. Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES[J]. Science China Physics, Mechanics and Astronomy, 2012, 55(2): 260-271. DOI: 10.1007/s11433-011-4601-9
|
[22] |
高传强. 跨声速复杂气动弹性问题的诱发机理及控制研究[D]. 西安: 西北工业大学, 2018.
|
[23] |
张伟伟, 高传强, 叶正寅. 复杂跨声速气动弹性现象及其机理分析[J]. 科学通报, 2018, 63(12): 1095-1110. doi: 10.1360/N972018-00151
ZHANG W W, GAO C Q, YE Z Y. The complex transonic aeroelastic phenomena and it's mechanisms[J]. Chinese Science Bulletin, 2018, 63(12): 1095-1110. (in Chinese)doi: 10.1360/N972018-00151
|
[24] |
WANG G, MIAN H H, YE Z Y, et al. Improved point selection method for hybrid-unstructured mesh deformation using radial basis functions[J]. AIAA Journal, 2014, 53(4): 1016-1025. DOI: 10.2514/1.J053304
|
[25] |
DOERFFER P, HIRSCH C, DUSSAUGE J P, et al. NACA0012 with aileron (marianna braza)[M]//Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 101-131. doi: 10.1007/978-3-642-03004-8_4
|
[26] |
侯忠生, 金尚泰. 无模型自适应控制: 理论与应用[M]. 北京: 科学出版社, 2013.
|
[27] |
高传强, 张伟伟, 叶正寅. 基于谐振舵面的跨声速抖振抑制探究[J]. 航空学报, 2015, 36(10): 3208-3217.
GAO C Q, ZHANG W W, YE Z Y. Study on transonic buffet suppression with flapping rudder[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3208-3217. (in Chinese)doi: 10.7527/S1000-6893.2015.0034
|
[28] |
GAO C Q, ZHANG W W, YE Z Y. Numerical study on closed-loop control of transonic buffet suppression by trailing edge flap[J]. Computers & Fluids, 2016, 132: 32-45. DOI: 10.1016/j.compfluid.2016.03.031
|
[1] | WANG Ze, WANG Ziyi, WANG Xu, SONG Shufang, ZHANG Weiwei. A data-driven aeroheating prediction model[J]. ACTA AERODYNAMICA SINICA, 2023, 41(5): 12-19. DOI: 10.7638/kqdlxxb-2022.0010 |
[2] | ZENG Lingwei, WANG Hanfeng, PENG Si. Flow control around a three dimensional square cylinder with free-end slot suction[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1093-1101. DOI: 10.7638/kqdlxxb-2018.0205 |
[3] | WANG Xu, REN Kai, GAO Chuanqiang, KONG Yinan, ZHANG Weiwei. Adaptive control method for frequency lock-in in transonic buffet flow[J]. ACTA AERODYNAMICA SINICA, 2020, 38(5): 1011-1016. DOI: 10.7638/kqdlxxb-2020.0085 |
[4] | ZHU Xiaojun, LI Feng, OU Dongbin, ZHOU Kai, LU Zhiliang. Numerical simulation of flow control in lift-increase effect using air-blowing[J]. ACTA AERODYNAMICA SINICA, 2020, 38(1): 66-72. DOI: 10.7638/kqdlxxb-2018.0056 |
[5] | Yu Jinge, Niu Zhongguo, Liang Hua, Sun Nan, Liu Jie. Experimental investigation on delta wing flow control by plasma[J]. ACTA AERODYNAMICA SINICA, 2017, 35(2): 305-309. DOI: 10.7638/kqdlxxb-2015.0158 |
[6] | Sun Shengshu, Gu Yunsong, Chen Yongliang, Zhao Xiong. Separation flow control on free-wing with beveled-slit-synthetic-jet at low Reynolds numbers[J]. ACTA AERODYNAMICA SINICA, 2017, 35(2): 277-282. DOI: 10.7638/kqdlxxb-2016.0165 |
[7] | Zhao Zhenshan, Ma Xiaoguang, Du Yu. Numerical simulation research of a Bump inlet flow control[J]. ACTA AERODYNAMICA SINICA, 2016, 34(4): 476-481. DOI: 10.7638/kqdlxxb-2014.0111 |
[8] | Li Peng, Ming Xiao. Fluorescence oil-film technique and its application in flow control[J]. ACTA AERODYNAMICA SINICA, 2015, 33(1): 142-147. DOI: 10.7638/kqdlxxb-2013.0057 |
[9] | LI Liang, LI Xiaowei. Numerical simulation of gusts over multi-element airfoils and their flow control[J]. ACTA AERODYNAMICA SINICA, 2013, 31(6): 710-717. |
[10] | YU Yan-ze, JIANG Zeng-yan, CHEN bao, . The investigation of flow control and drag reduction mechanism for transport airplane aft-body[J]. ACTA AERODYNAMICA SINICA, 2011, 29(5): 640-644. DOI: 130.25/j.issn.0258-1825.2011.05.017 |
1. |
贾天昊,高超,王玉帅,许和勇. 零质量射流控制翼型跨声速激波抖振特性. 空气动力学学报. 2025(03): 29-41 .
![]() | |
2. |
豆子皓,吴军强,高传强,张伟伟. CHN-T2标模跨声速抖振特性及雷诺数效应研究. 空气动力学学报. 2024(08): 93-107 .
![]() | |
3. |
徐通福,李秀英. 基于控制器动态线性化的数据驱动ILC. 火力与指挥控制. 2023(05): 33-38 .
![]() |