Citation: | CHEN L, LAI H L, LIN C D, et al. Numerical study of multimode Rayleigh-Taylor instability by using the discrete Boltzmann method[J]. Acta Aerodynamica Sinica, 2022, 40(3): 140−150. DOI: 10.7638/kqdlxxb-2021.0345 |
[1] |
RAYLEIGH L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[J]. Proceedings of the London Mathematical Society, 1882, s1-14(1): 170-177. DOI: 10.1112/plms/s1-14.1.170
|
[2] |
TAYLOR G I. . The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1950, 201(1065): 192-196. DOI: 10.1098/rspa.1950.0052
|
[3] |
WOO K M, BETTI R, SHVARTS D, et al. Effects of residual kinetic energy on yield degradation and ion temperature asymmetries in inertial confinement fusion implosions[J]. Physics of Plasmas, 2018, 25(5): 052704. DOI: 10.1063/1.5026706
|
[4] |
MAEDER A, MEYNET G, LAGARDE N, et al. The thermohaline, Richardson, Rayleigh-Taylor, Solberg–Høiland, and GSF criteria in rotating stars[J]. Astronomy & Astrophysics, 2013, 553: A1. DOI: 10.1051/0004-6361/201220936
|
[5] |
SHIOKAWA K, NAKAJIMA A, IEDA A, et al. Rayleigh-Taylor type instability in auroral patches[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A2): A02211. DOI: 10.1029/2009ja014273
|
[6] |
MARTIN J, XILOURIS K, SOKER N. The early interaction of the planetary nebula NGC 40 with the interstellar medium[J]. Astronomy & Astrophysics, 2002, 391(2): 689-692. DOI:10.1051/0004-6361: 20020848
|
[7] |
ABARZHI S I, BHOWMICK A K, NAVEH A, et al. Supernova, nuclear synthesis, fluid instabilities, and interfacial mixing[J]. Proceedings of the National Academy of Sciences, 2019, 116(37): 18184-18192. DOI: 10.1073/pnas.1714502115
|
[8] |
AKULA B, SUCHANDRA P, MIKHAEIL M, et al. Dynamics of unstably stratified free shear flows: an experimental investigation of coupled Kelvin–Helmholtz and Rayleigh–Taylor instability[J]. Journal of Fluid Mechanics, 2017, 816: 619-660. DOI: 10.1017/jfm.2017.95
|
[9] |
POLAVARAPU R, ROACH P, BANERJEE A. Rayleigh-Taylor-instability experiments with elastic-plastic materials[J]. Physical Review E, 2019, 99(5-1): 053104. DOI: 10.1103/physreve.99.053104
|
[10] |
XUE C, YE W H. Destabilizing effect of compressibility on Rayleigh-Taylor instability for fluids with fixed density profile[J]. Physics of Plasmas, 2010, 17(4): 042705. DOI: 10.1063/1.3360295
|
[11] |
ZHANG Y S, RUAN Y C, XIE H S, et al. Mixed mass of classical Rayleigh-Taylor mixing at arbitrary density ratios[J]. Physics of Fluids, 2020, 32(1): 011702. DOI: 10.1063/1.5131495
|
[12] |
MESHKOV E E, ABARZHI S I. Group theory and jelly's experiment of Rayleigh–Taylor instability and Rayleigh–Taylor interfacial mixing[J]. Fluid Dynamics Research, 2019, 51(6): 065502. DOI: 10.1088/1873-7005/ab3e83
|
[13] |
陶烨晟, 王立锋, 叶文华, 等. 任意Atwood数Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究[J]. 物理学报, 2012, 61(7): 314-320.
TAO Y S, WANG L F, YE W H, et al. The bubble velocity research of Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers[J]. Acta Physica Sinica, 2012, 61(7): 314-320. (in Chinese)
|
[14] |
GALLIS M A; KOEHLER T P; TORCZYNSKI J R, et al. Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability[J]. Physical Review Fluids, 2016, 1(4): 043403. Doi: 10.1103/PhysRevFluids.1.043403
|
[15] |
WEI Y K, DOU H S, QIAN Y H, et al. A novel two-dimensional coupled lattice Boltzmann model for incompressible flow in application of turbulence Rayleigh-Taylor instability[J]. Computers & Fluids, 2017, 156: 97-102. DOI: 10.1016/j.compfluid.2017.07.003
|
[16] |
LIANG H, HU X L, HUANG X F, et al. Direct numerical simulations of multi-mode immiscible Rayleigh-Taylor instability with high Reynolds numbers[J]. Physics of Fluids, 2019, 31(11): 112104. DOI: 10.1063/1.5127888
|
[17] |
LYUBIMOVA T, VOROBEV A, PROKOPEV S. Rayleigh-Taylor instability of a miscible interface in a confined domain[J]. Physics of Fluids, 2019, 31(1): 014104. DOI: 10.1063/1.5064547
|
[18] |
WIELAND S A, HAMLINGTON P E, RECKINGER S J, et al. Effects of isothermal stratification strength on vorticity dynamics for single-mode compressible Rayleigh-Taylor instability[J]. Physical Review Fluids, 2019, 4(9): 093905. DOI: 10.1103/physrevfluids.4.093905
|
[19] |
LI Z Y, WANG L F, WU J F, et al. Interface coupling effects of weakly nonlinear Rayleigh–Taylor instability with double interfaces[J]. Chinese Physics B, 2020, 29(3): 034704. DOI: 10.1088/1674-1056/ab6965
|
[20] |
LUO T F, WANG J C, XIE C Y, et al. Effects of compressibility and Atwood number on the single-mode Rayleigh-Taylor instability[J]. Physics of Fluids, 2020, 32(1): 012110. DOI: 10.1063/1.5131585
|
[21] |
LIVESCU D, WEI T, BRADY P T. Rayleigh-Taylor instability with gravity reversal[J]. Physica D: Nonlinear Phenomena, 2021, 417: 132832. DOI: 10.1016/j.physd.2020.132832
|
[22] |
BANERJEE A, ANDREWS M J. 3D Simulations to investigate initial condition effects on the growth of Rayleigh-Taylor mixing[J]. International Journal of Heat and Mass Transfer, 2009, 52(17-18): 3906-3917. DOI: 10.1016/j.ijheatmasstransfer.2009.03.032
|
[23] |
BURTON G C. Study of ultrahigh Atwood-number Rayleigh-Taylor mixing dynamics using the nonlinear large-eddy simulation method[J]. Physics of Fluids, 2011, 23(4): 045106. DOI: 10.1063/1.3549931
|
[24] |
ZHANG H, BETTI R, YAN R, et al. Self-similar multimode bubble-front evolution of the ablative Rayleigh-Taylor instability in two and three dimensions[J]. Physical Review Letters, 2018, 121(18): 185002. DOI: 10.1103/physrevlett.121.185002
|
[25] |
YILMAZ I. Analysis of Rayleigh-Taylor instability at high Atwood numbers using fully implicit, non-dissipative, energy-conserving large eddy simulation algorithm[J]. Physics of Fluids, 2020, 32(5): 054101. DOI: 10.1063/1.5138978
|
[26] |
HAMZEHLOO A, BARTHOLOMEW P, LAIZET S. Direct numerical simulations of incompressible Rayleigh-Taylor instabilities at low and medium Atwood numbers[J]. Physics of Fluids, 2021, 33(5): 054114. DOI: 10.1063/5.0049867
|
[27] |
DING J C, SUN P Y, HUANG S H, et al. Single- and dual-mode Rayleigh-Taylor instability at microscopic scale[J]. Physics of Fluids, 2021, 33(4): 042102. DOI: 10.1063/5.0042505
|
[28] |
LIU H, ZHANG Y, KANG W, et al. Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons[J]. Physical Review E, 2017, 95(2-1): 023201. DOI: 10.1103/physreve.95.023201
|
[29] |
许爱国, 张广财, 应阳君. 燃烧系统的离散Boltzmann建模与模拟研究进展[J]. 物理学报, 2015, 64(18): 35-60. doi: 10.7498/aps.64.184701
XU A G, ZHANG G C, YING Y J. Progess of discrete Boltzmann modeling and simulation of combustion system[J]. Acta Physica Sinica, 2015, 64(18): 35-60. (in Chinese) doi: 10.7498/aps.64.184701
|
[30] |
XU A G, ZHANG G C, ZHANG Y D. Discrete Boltzmann modeling of compressible flows[M]// KYZAS G Z, MITROPOULOS A C, edited. Kinetic Theory: Chapter 2. Croatia: InTech, 2018. https://www.intechopen.com/chapters/56964 doi: 10.5772/intechopen.70748
|
[31] |
XU A G, ZHANG G C, GAN Y B, et al. Lattice Boltzmann modeling and simulation of compressible flows[J]. Frontiers of Physics, 2012, 7(5): 582-600. DOI: 10.1007/s11467-012-0269-5
|
[32] |
许爱国, 陈杰, 宋家辉, 等. 多相流系统的离散玻尔兹曼研究进展[J]. 空气动力学学报, 2021, 39(3): 138-169. doi: 10.7638/kqdlxxb-2021.0021
XU A G, CHEN J, SONG J H, et al. Progress of discrete Boltzmann study on multiphase complex flows[J]. Acta Aerodynamica Sinica, 2021, 39(3): 138-169. (in Chinese) doi: 10.7638/kqdlxxb-2021.0021
|
[33] |
许爱国, 宋家辉, 陈锋, 等. 基于相空间的复杂物理场建模与分析方法[J]. 计算物理, 2021, 38(6): 631-660. doi: 10.19596/j.cnki.1001-246x.8379
XU A G, SONG J H, CHEN F, XIE K, YING Y J. Modeling and analysis methods for complex fields based on phase space[J]. Chinese Journal of Computational Physics, 2021, 38(6): 631-660(in Chinese). doi: 10.19596/j.cnki.1001-246x.8379
|
[34] |
LAI H L, XU A G, ZHANG G C, et al. Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows[J]. Physical Review E, 2016, 94(2): 023106. DOI: 10.1103/physreve.94.023106
|
[35] |
李德梅, 赖惠林, 许爱国, 等. 可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟[J]. 物理学报, 2018, 67(8): 080501. doi: 10.7498/aps.67.20171952
LI D M, LAI H L, XU A G, et al. Discrete Boltzmann simulation of Rayleigh-Taylor instability in compressible flows[J]. Acta Physica Sinica, 2018, 67(8): 080501. (in Chinese) doi: 10.7498/aps.67.20171952
|
[36] |
CHEN F, XU A G, ZHANG G C. Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh-Taylor Instability[J]. Frontiers of Physics, 2016, 11(6): 114703. DOI: 10.1007/s11467-016-0603-4
|
[37] |
CHEN F, XU A G, ZHANG G C. Collaboration and competition between Richtmyer-Meshkov instability and Rayleigh-Taylor instability[J]. Physics of Fluids, 2018, 30(10): 102105. DOI: 10.1063/1.5049869
|
[38] |
GAN Y B, XU A G, ZHANG G C, et al. Nonequilibrium and morphological characterizations of Kelvin-Helmholtz instability in compressible flows[J]. Frontiers of Physics, 2019, 14(4): 1-17. DOI: 10.1007/s11467-019-0885-4
|
[39] |
LIN C D, LUO K H, GAN Y B, et al. Kinetic simulation of nonequilibrium Kelvin-Helmholtz instability[J]. Communications in Theoretical Physics, 2019, 71(1): 132. DOI: 10.1088/0253-6102/71/1/132
|
[40] |
CHEN F, XU A G, ZHANG Y D, et al. Morphological and non-equilibrium analysis of coupled Rayleigh-Taylor-Kelvin-Helmholtz instability[J]. Physics of Fluids, 2020, 32(10): 104111. DOI: 10.1063/5.0023364
|
[41] |
YE H Y, LAI H L, LI D M, et al. Knudsen number effects on two-dimensional Rayleigh–Taylor instability in compressible fluid: Based on a discrete Boltzmann method[J]. Entropy, 2020, 22(5): 500. DOI: 10.3390/e22050500
|
[42] |
CHEN L, LAI H L, LIN C D, et al. Specific heat ratio effects of compressible Rayleigh—Taylor instability studied by discrete Boltzmann method[J]. Frontiers of Physics, 2021, 16(5): 1-12. DOI: 10.1007/s11467-021-1096-3
|
[43] |
ZHANG G, XU A G, ZHANG D J, et al. Delineation of the flow and mixing induced by Rayleigh-Taylor instability through tracers[J]. Physics of Fluids, 2021, 33(7): 076105. DOI: 10.1063/5.0051154
|
[44] |
GAN Y B, XU A G, ZHANG G C, et al. Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions[J]. Frontiers of Physics, 2012, 7(4): 481-490. DOI: 10.1007/s11467-012-0245-0
|
[45] |
GAN Y B, XU A G, ZHANG G C, et al. Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects[J]. Soft Matter, 2015, 11(26): 5336-5345. DOI: 10.1039/c5sm01125f
|
[46] |
LIN C D, LUO K H, FEI L L, et al. A multi-component discrete Boltzmann model for nonequilibrium reactive flows[J]. Scientific Reports, 2017, 7: 14580. DOI: 10.1038/s41598-017-14824-9
|
[47] |
LIN C D, LUO K H. MRT discrete Boltzmann method for compressible exothermic reactive flows[J]. Computers & Fluids, 2018, 166: 176-183. DOI: 10.1016/j.compfluid.2018.02.012
|
[48] |
LIN C D, LUO K H. Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects[J]. Physical Review E, 2019, 99: 012142. DOI: 10.1103/physreve.99.012142
|
[49] |
LIN C D, SU X L, ZHANG Y D. Hydrodynamic and thermodynamic nonequilibrium effects around shock waves: based on a discrete Boltzmann method[J]. Entropy, 2020, 22(12): 1397. DOI: 10.3390/e22121397
|
[50] |
YAN B, XU A G, ZHANG G C, et al. Lattice Boltzmann model for combustion and detonation[J]. Frontiers of Physics, 2013, 8(1): 94-110. DOI: 10.1007/s11467-013-0286-z
|
[51] |
LIN C D, XU A G, ZHANG G C, et al. Polar coordinate Lattice Boltzmann Kinetic modeling of detonation phenomena[J]. Communications in Theoretical Physics, 2014, 62(5): 737-748. DOI: 10.1088/0253-6102/62/5/18
|
[52] |
ZHANG Y D, XU A G, ZHANG G C, et al. Kinetic modeling of detonation and effects of negative temperature coefficient[J]. Combustion and Flame, 2016, 173: 483-492. DOI: 10.1016/j.combustflame.2016.04.003
|
[53] |
LIN C D, XU A G, ZHANG G C, et al. Double-distribution-function discrete Boltzmann model for combustion[J]. Combustion and Flame, 2016, 164: 137-151. DOI: 10.1016/j.combustflame.2015.11.010
|
[54] |
LIN C D, LUO K H. Mesoscopic simulation of nonequilibrium detonation with discrete Boltzmann method[J]. Combustion and Flame, 2018, 198: 356-362. DOI: 10.1016/j.combustflame.2018.09.027
|
[55] |
ZHANG Y D, XU A G, ZHANG G C, et al. A one-dimensional discrete Boltzmann model for detonation and an abnormal detonation phenomenon[J]. Communications in Theoretical Physics, 2019, 71(1): 117. DOI: 10.1088/0253-6102/71/1/117
|
[56] |
LIN C D, LUO K H. Kinetic simulation of unsteady detonation with thermodynamic nonequilibrium effects[J]. Combustion, Explosion, and Shock Waves, 2020, 56(4): 435-443. DOI: 10.1134/S0010508220040073
|
[57] |
GIMELSHEIN S F, WYSONG I J. Nonequilibrium air flow predictions with a high-fidelity direct simulation Monte Carlo approach[J]. Physical Review Fluids, 2019, 4(3): 033405. DOI: 10.1103/physrevfluids.4.033405
|
[58] |
ZHANG Y D, XU A G, ZHANG G C, et al. Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model[J]. Computer Physics Communications, 2019, 238: 50-65. DOI: 10.1016/j.cpc.2018.12.018
|
[59] |
ZHANG H X, ZHUANG F G. NND schemes and their applications to numerical simulation of two- and three-dimensional flows[J]. Advances in Applied Mechanics, 1991, 29: 193-256. DOI: 10.1016/S0065-2156(08)70165-0
|
[60] |
NOURGALIEV R R, THEOFANOUS T G. High-fidelity interface tracking in compressible flows: unlimited anchored adaptive level set[J]. Journal of Computational Physics, 2007, 224(2): 836-866. DOI: 10.1016/j.jcp.2006.10.031
|
[61] |
RAHMAN S, SAN O. A relaxation filtering approach for two-dimensional Rayleigh–Taylor instability-induced flows[J]. Fluids, 2019, 4(2): 78. DOI: 10.3390/fluids4020078
|