CHEN L, LAI H L, LIN C D, et al. Numerical study of multimode Rayleigh-Taylor instability by using the discrete Boltzmann method[J]. Acta Aerodynamica Sinica, 2022, 40(3): 140−150. DOI: 10.7638/kqdlxxb-2021.0345
Citation: CHEN L, LAI H L, LIN C D, et al. Numerical study of multimode Rayleigh-Taylor instability by using the discrete Boltzmann method[J]. Acta Aerodynamica Sinica, 2022, 40(3): 140−150. DOI: 10.7638/kqdlxxb-2021.0345

Numerical study of multimode Rayleigh-Taylor instability by using the discrete Boltzmann method

More Information
  • Received Date: October 05, 2021
  • Revised Date: November 10, 2021
  • Accepted Date: November 24, 2021
  • Available Online: December 26, 2021
  • Rayleigh-Taylor (RT) instability phenomenon exists widely in nature and engineering fields. It is of great theoretical significance and practical value to clearly understand the physical mechanism of the RT instability. In this paper, the compressible RT instability is simulated by the discrete Boltzmann method (DBM), and the compressible RT instability with random multimode initial perturbations at continuous interfaces is numerically investigated by means of the DBM. The results show that with the influence of temperature gradient, the thermodynamic non-equilibrium strength related to heat flux firstly increases and then decreases. Under the action of thermal diffusion, the thermodynamic non-equilibrium strength at the interface firstly decreases and then increases, which affects the time evolution of proportion of the thermodynamic non-equilibrium region. In this respect, effects of temperature gradient and thermal diffusion on the time evolution trend of non-equilibrium strength at the interface are the same. Finally, we analyze the time evolution of the global average thermodynamic non-equilibrium strength, and find that under the joint action of macroscopic physical gradients and thermodynamic non-equilibrium area, the global average thermodynamic non-equilibrium strength firstly increases, then decreases, and finally tends to be stable. On the one hand, the increase (decrease) of the area of thermodynamic non-equilibrium region will increase (decrease) the strength of thermodynamic non-equilibrium. On the other hand, the increase (decrease) of physical gradients at the material interface also has the same effect on the global average thermodynamic non-equilibrium strength. The two physical mechanisms interact and compete with each other.
  • [1]
    RAYLEIGH L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[J]. Proceedings of the London Mathematical Society, 1882, s1-14(1): 170-177. DOI: 10.1112/plms/s1-14.1.170
    [2]
    TAYLOR G I. . The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1950, 201(1065): 192-196. DOI: 10.1098/rspa.1950.0052
    [3]
    WOO K M, BETTI R, SHVARTS D, et al. Effects of residual kinetic energy on yield degradation and ion temperature asymmetries in inertial confinement fusion implosions[J]. Physics of Plasmas, 2018, 25(5): 052704. DOI: 10.1063/1.5026706
    [4]
    MAEDER A, MEYNET G, LAGARDE N, et al. The thermohaline, Richardson, Rayleigh-Taylor, Solberg–Høiland, and GSF criteria in rotating stars[J]. Astronomy & Astrophysics, 2013, 553: A1. DOI: 10.1051/0004-6361/201220936
    [5]
    SHIOKAWA K, NAKAJIMA A, IEDA A, et al. Rayleigh-Taylor type instability in auroral patches[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A2): A02211. DOI: 10.1029/2009ja014273
    [6]
    MARTIN J, XILOURIS K, SOKER N. The early interaction of the planetary nebula NGC 40 with the interstellar medium[J]. Astronomy & Astrophysics, 2002, 391(2): 689-692. DOI:10.1051/0004-6361: 20020848
    [7]
    ABARZHI S I, BHOWMICK A K, NAVEH A, et al. Supernova, nuclear synthesis, fluid instabilities, and interfacial mixing[J]. Proceedings of the National Academy of Sciences, 2019, 116(37): 18184-18192. DOI: 10.1073/pnas.1714502115
    [8]
    AKULA B, SUCHANDRA P, MIKHAEIL M, et al. Dynamics of unstably stratified free shear flows: an experimental investigation of coupled Kelvin–Helmholtz and Rayleigh–Taylor instability[J]. Journal of Fluid Mechanics, 2017, 816: 619-660. DOI: 10.1017/jfm.2017.95
    [9]
    POLAVARAPU R, ROACH P, BANERJEE A. Rayleigh-Taylor-instability experiments with elastic-plastic materials[J]. Physical Review E, 2019, 99(5-1): 053104. DOI: 10.1103/physreve.99.053104
    [10]
    XUE C, YE W H. Destabilizing effect of compressibility on Rayleigh-Taylor instability for fluids with fixed density profile[J]. Physics of Plasmas, 2010, 17(4): 042705. DOI: 10.1063/1.3360295
    [11]
    ZHANG Y S, RUAN Y C, XIE H S, et al. Mixed mass of classical Rayleigh-Taylor mixing at arbitrary density ratios[J]. Physics of Fluids, 2020, 32(1): 011702. DOI: 10.1063/1.5131495
    [12]
    MESHKOV E E, ABARZHI S I. Group theory and jelly's experiment of Rayleigh–Taylor instability and Rayleigh–Taylor interfacial mixing[J]. Fluid Dynamics Research, 2019, 51(6): 065502. DOI: 10.1088/1873-7005/ab3e83
    [13]
    陶烨晟, 王立锋, 叶文华, 等. 任意Atwood数Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究[J]. 物理学报, 2012, 61(7): 314-320.

    TAO Y S, WANG L F, YE W H, et al. The bubble velocity research of Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers[J]. Acta Physica Sinica, 2012, 61(7): 314-320. (in Chinese)
    [14]
    GALLIS M A; KOEHLER T P; TORCZYNSKI J R, et al. Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability[J]. Physical Review Fluids, 2016, 1(4): 043403. Doi: 10.1103/PhysRevFluids.1.043403
    [15]
    WEI Y K, DOU H S, QIAN Y H, et al. A novel two-dimensional coupled lattice Boltzmann model for incompressible flow in application of turbulence Rayleigh-Taylor instability[J]. Computers & Fluids, 2017, 156: 97-102. DOI: 10.1016/j.compfluid.2017.07.003
    [16]
    LIANG H, HU X L, HUANG X F, et al. Direct numerical simulations of multi-mode immiscible Rayleigh-Taylor instability with high Reynolds numbers[J]. Physics of Fluids, 2019, 31(11): 112104. DOI: 10.1063/1.5127888
    [17]
    LYUBIMOVA T, VOROBEV A, PROKOPEV S. Rayleigh-Taylor instability of a miscible interface in a confined domain[J]. Physics of Fluids, 2019, 31(1): 014104. DOI: 10.1063/1.5064547
    [18]
    WIELAND S A, HAMLINGTON P E, RECKINGER S J, et al. Effects of isothermal stratification strength on vorticity dynamics for single-mode compressible Rayleigh-Taylor instability[J]. Physical Review Fluids, 2019, 4(9): 093905. DOI: 10.1103/physrevfluids.4.093905
    [19]
    LI Z Y, WANG L F, WU J F, et al. Interface coupling effects of weakly nonlinear Rayleigh–Taylor instability with double interfaces[J]. Chinese Physics B, 2020, 29(3): 034704. DOI: 10.1088/1674-1056/ab6965
    [20]
    LUO T F, WANG J C, XIE C Y, et al. Effects of compressibility and Atwood number on the single-mode Rayleigh-Taylor instability[J]. Physics of Fluids, 2020, 32(1): 012110. DOI: 10.1063/1.5131585
    [21]
    LIVESCU D, WEI T, BRADY P T. Rayleigh-Taylor instability with gravity reversal[J]. Physica D: Nonlinear Phenomena, 2021, 417: 132832. DOI: 10.1016/j.physd.2020.132832
    [22]
    BANERJEE A, ANDREWS M J. 3D Simulations to investigate initial condition effects on the growth of Rayleigh-Taylor mixing[J]. International Journal of Heat and Mass Transfer, 2009, 52(17-18): 3906-3917. DOI: 10.1016/j.ijheatmasstransfer.2009.03.032
    [23]
    BURTON G C. Study of ultrahigh Atwood-number Rayleigh-Taylor mixing dynamics using the nonlinear large-eddy simulation method[J]. Physics of Fluids, 2011, 23(4): 045106. DOI: 10.1063/1.3549931
    [24]
    ZHANG H, BETTI R, YAN R, et al. Self-similar multimode bubble-front evolution of the ablative Rayleigh-Taylor instability in two and three dimensions[J]. Physical Review Letters, 2018, 121(18): 185002. DOI: 10.1103/physrevlett.121.185002
    [25]
    YILMAZ I. Analysis of Rayleigh-Taylor instability at high Atwood numbers using fully implicit, non-dissipative, energy-conserving large eddy simulation algorithm[J]. Physics of Fluids, 2020, 32(5): 054101. DOI: 10.1063/1.5138978
    [26]
    HAMZEHLOO A, BARTHOLOMEW P, LAIZET S. Direct numerical simulations of incompressible Rayleigh-Taylor instabilities at low and medium Atwood numbers[J]. Physics of Fluids, 2021, 33(5): 054114. DOI: 10.1063/5.0049867
    [27]
    DING J C, SUN P Y, HUANG S H, et al. Single- and dual-mode Rayleigh-Taylor instability at microscopic scale[J]. Physics of Fluids, 2021, 33(4): 042102. DOI: 10.1063/5.0042505
    [28]
    LIU H, ZHANG Y, KANG W, et al. Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons[J]. Physical Review E, 2017, 95(2-1): 023201. DOI: 10.1103/physreve.95.023201
    [29]
    许爱国, 张广财, 应阳君. 燃烧系统的离散Boltzmann建模与模拟研究进展[J]. 物理学报, 2015, 64(18): 35-60. doi: 10.7498/aps.64.184701

    XU A G, ZHANG G C, YING Y J. Progess of discrete Boltzmann modeling and simulation of combustion system[J]. Acta Physica Sinica, 2015, 64(18): 35-60. (in Chinese) doi: 10.7498/aps.64.184701
    [30]
    XU A G, ZHANG G C, ZHANG Y D. Discrete Boltzmann modeling of compressible flows[M]// KYZAS G Z, MITROPOULOS A C, edited. Kinetic Theory: Chapter 2. Croatia: InTech, 2018. https://www.intechopen.com/chapters/56964 doi: 10.5772/intechopen.70748
    [31]
    XU A G, ZHANG G C, GAN Y B, et al. Lattice Boltzmann modeling and simulation of compressible flows[J]. Frontiers of Physics, 2012, 7(5): 582-600. DOI: 10.1007/s11467-012-0269-5
    [32]
    许爱国, 陈杰, 宋家辉, 等. 多相流系统的离散玻尔兹曼研究进展[J]. 空气动力学学报, 2021, 39(3): 138-169. doi: 10.7638/kqdlxxb-2021.0021

    XU A G, CHEN J, SONG J H, et al. Progress of discrete Boltzmann study on multiphase complex flows[J]. Acta Aerodynamica Sinica, 2021, 39(3): 138-169. (in Chinese) doi: 10.7638/kqdlxxb-2021.0021
    [33]
    许爱国, 宋家辉, 陈锋, 等. 基于相空间的复杂物理场建模与分析方法[J]. 计算物理, 2021, 38(6): 631-660. doi: 10.19596/j.cnki.1001-246x.8379

    XU A G, SONG J H, CHEN F, XIE K, YING Y J. Modeling and analysis methods for complex fields based on phase space[J]. Chinese Journal of Computational Physics, 2021, 38(6): 631-660(in Chinese). doi: 10.19596/j.cnki.1001-246x.8379
    [34]
    LAI H L, XU A G, ZHANG G C, et al. Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows[J]. Physical Review E, 2016, 94(2): 023106. DOI: 10.1103/physreve.94.023106
    [35]
    李德梅, 赖惠林, 许爱国, 等. 可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟[J]. 物理学报, 2018, 67(8): 080501. doi: 10.7498/aps.67.20171952

    LI D M, LAI H L, XU A G, et al. Discrete Boltzmann simulation of Rayleigh-Taylor instability in compressible flows[J]. Acta Physica Sinica, 2018, 67(8): 080501. (in Chinese) doi: 10.7498/aps.67.20171952
    [36]
    CHEN F, XU A G, ZHANG G C. Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh-Taylor Instability[J]. Frontiers of Physics, 2016, 11(6): 114703. DOI: 10.1007/s11467-016-0603-4
    [37]
    CHEN F, XU A G, ZHANG G C. Collaboration and competition between Richtmyer-Meshkov instability and Rayleigh-Taylor instability[J]. Physics of Fluids, 2018, 30(10): 102105. DOI: 10.1063/1.5049869
    [38]
    GAN Y B, XU A G, ZHANG G C, et al. Nonequilibrium and morphological characterizations of Kelvin-Helmholtz instability in compressible flows[J]. Frontiers of Physics, 2019, 14(4): 1-17. DOI: 10.1007/s11467-019-0885-4
    [39]
    LIN C D, LUO K H, GAN Y B, et al. Kinetic simulation of nonequilibrium Kelvin-Helmholtz instability[J]. Communications in Theoretical Physics, 2019, 71(1): 132. DOI: 10.1088/0253-6102/71/1/132
    [40]
    CHEN F, XU A G, ZHANG Y D, et al. Morphological and non-equilibrium analysis of coupled Rayleigh-Taylor-Kelvin-Helmholtz instability[J]. Physics of Fluids, 2020, 32(10): 104111. DOI: 10.1063/5.0023364
    [41]
    YE H Y, LAI H L, LI D M, et al. Knudsen number effects on two-dimensional Rayleigh–Taylor instability in compressible fluid: Based on a discrete Boltzmann method[J]. Entropy, 2020, 22(5): 500. DOI: 10.3390/e22050500
    [42]
    CHEN L, LAI H L, LIN C D, et al. Specific heat ratio effects of compressible Rayleigh—Taylor instability studied by discrete Boltzmann method[J]. Frontiers of Physics, 2021, 16(5): 1-12. DOI: 10.1007/s11467-021-1096-3
    [43]
    ZHANG G, XU A G, ZHANG D J, et al. Delineation of the flow and mixing induced by Rayleigh-Taylor instability through tracers[J]. Physics of Fluids, 2021, 33(7): 076105. DOI: 10.1063/5.0051154
    [44]
    GAN Y B, XU A G, ZHANG G C, et al. Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions[J]. Frontiers of Physics, 2012, 7(4): 481-490. DOI: 10.1007/s11467-012-0245-0
    [45]
    GAN Y B, XU A G, ZHANG G C, et al. Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects[J]. Soft Matter, 2015, 11(26): 5336-5345. DOI: 10.1039/c5sm01125f
    [46]
    LIN C D, LUO K H, FEI L L, et al. A multi-component discrete Boltzmann model for nonequilibrium reactive flows[J]. Scientific Reports, 2017, 7: 14580. DOI: 10.1038/s41598-017-14824-9
    [47]
    LIN C D, LUO K H. MRT discrete Boltzmann method for compressible exothermic reactive flows[J]. Computers & Fluids, 2018, 166: 176-183. DOI: 10.1016/j.compfluid.2018.02.012
    [48]
    LIN C D, LUO K H. Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects[J]. Physical Review E, 2019, 99: 012142. DOI: 10.1103/physreve.99.012142
    [49]
    LIN C D, SU X L, ZHANG Y D. Hydrodynamic and thermodynamic nonequilibrium effects around shock waves: based on a discrete Boltzmann method[J]. Entropy, 2020, 22(12): 1397. DOI: 10.3390/e22121397
    [50]
    YAN B, XU A G, ZHANG G C, et al. Lattice Boltzmann model for combustion and detonation[J]. Frontiers of Physics, 2013, 8(1): 94-110. DOI: 10.1007/s11467-013-0286-z
    [51]
    LIN C D, XU A G, ZHANG G C, et al. Polar coordinate Lattice Boltzmann Kinetic modeling of detonation phenomena[J]. Communications in Theoretical Physics, 2014, 62(5): 737-748. DOI: 10.1088/0253-6102/62/5/18
    [52]
    ZHANG Y D, XU A G, ZHANG G C, et al. Kinetic modeling of detonation and effects of negative temperature coefficient[J]. Combustion and Flame, 2016, 173: 483-492. DOI: 10.1016/j.combustflame.2016.04.003
    [53]
    LIN C D, XU A G, ZHANG G C, et al. Double-distribution-function discrete Boltzmann model for combustion[J]. Combustion and Flame, 2016, 164: 137-151. DOI: 10.1016/j.combustflame.2015.11.010
    [54]
    LIN C D, LUO K H. Mesoscopic simulation of nonequilibrium detonation with discrete Boltzmann method[J]. Combustion and Flame, 2018, 198: 356-362. DOI: 10.1016/j.combustflame.2018.09.027
    [55]
    ZHANG Y D, XU A G, ZHANG G C, et al. A one-dimensional discrete Boltzmann model for detonation and an abnormal detonation phenomenon[J]. Communications in Theoretical Physics, 2019, 71(1): 117. DOI: 10.1088/0253-6102/71/1/117
    [56]
    LIN C D, LUO K H. Kinetic simulation of unsteady detonation with thermodynamic nonequilibrium effects[J]. Combustion, Explosion, and Shock Waves, 2020, 56(4): 435-443. DOI: 10.1134/S0010508220040073
    [57]
    GIMELSHEIN S F, WYSONG I J. Nonequilibrium air flow predictions with a high-fidelity direct simulation Monte Carlo approach[J]. Physical Review Fluids, 2019, 4(3): 033405. DOI: 10.1103/physrevfluids.4.033405
    [58]
    ZHANG Y D, XU A G, ZHANG G C, et al. Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model[J]. Computer Physics Communications, 2019, 238: 50-65. DOI: 10.1016/j.cpc.2018.12.018
    [59]
    ZHANG H X, ZHUANG F G. NND schemes and their applications to numerical simulation of two- and three-dimensional flows[J]. Advances in Applied Mechanics, 1991, 29: 193-256. DOI: 10.1016/S0065-2156(08)70165-0
    [60]
    NOURGALIEV R R, THEOFANOUS T G. High-fidelity interface tracking in compressible flows: unlimited anchored adaptive level set[J]. Journal of Computational Physics, 2007, 224(2): 836-866. DOI: 10.1016/j.jcp.2006.10.031
    [61]
    RAHMAN S, SAN O. A relaxation filtering approach for two-dimensional Rayleigh–Taylor instability-induced flows[J]. Fluids, 2019, 4(2): 78. DOI: 10.3390/fluids4020078

Catalog

    Article views (666) PDF downloads (69) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return