NAN X Y, LIU Y, MA Y, et al. Thermodynamic process and operating characteristics of air turbo rocket engine[J]. Acta Aerodynamica Sinica, 2022, 40(1): 181−189. DOI: 10.7638/kqdlxxb-2022.0033
Citation: NAN X Y, LIU Y, MA Y, et al. Thermodynamic process and operating characteristics of air turbo rocket engine[J]. Acta Aerodynamica Sinica, 2022, 40(1): 181−189. DOI: 10.7638/kqdlxxb-2022.0033

Thermodynamic process and operating characteristics of air turbo rocket engine

More Information
  • Received Date: February 05, 2022
  • Revised Date: February 11, 2022
  • Accepted Date: February 15, 2022
  • Available Online: March 13, 2022
  • Air turbo rocket (ATR) engines, which are usually used as the power of independent air-launch platforms and near-space aircraft, have been developed for decades. This paper presents an overview of the research progress of ATR engines first. Then the effects of key parameters on the thermodynamic process of ATR engines are investigated. These parameters are the temperature ratio in the gas generator, the pressure ratio in the compressor, and the pressure ratio in the turbine. On this basis, the overall performance of ATR engines with monopropellant and bipropellant is studied through numerical simulations and experiments. By analyzing the start-up and operation characteristics under a high-attitude working condition, it is found that large thrust and short start-up time (less than five seconds) can be obtained in flight envelopes with the Mach number less than four. To increase the velocity range and reduce the fuel consumption of ATR engines, an innovative scheme integrating the ATR engine and the scramjet engine is proposed. This combined-cycle engine takes full advantage of ATR’s good acceleration ability and scramjet’s hypersonic cruise capability. Results show that continuous thrust can be obtained during the mode transition between the ATR and ramjet, providing a prospective power solution for supersonic and hypersonic near-space aircraft.
  • [1]
    黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报, 2010, 31(5): 1259-1265. doi: 10.3873/j.issn.1000-1328.2010.05.001

    HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(5): 1259-1265. (in Chinese) doi: 10.3873/j.issn.1000-1328.2010.05.001
    [2]
    张建民, 杜新, 尘军. 临近空间高超声速飞行器技术发展与展望[J]. 临近空间科学与工程, 2009(1).

    ZHANG J M, DU X, CHEN J. Development and prospect of near-space high speed aircraft technology[J]. Near Space Science and Engineering, 2009(1).
    [3]
    李平, 张玫. 临近空间高速飞行器动力技术发展思考[C]//航天集团公司科技委2010年会, 北京, 2010.

    LI P, ZHANG M. Near space high speed aircraft propulsion reflection on future development[c]//China Aerospace Science and Technology Corporation Annual Meeting, Beijing, 2010.
    [4]
    张蒙正, 李平, 陈祖奎. 组合循环动力系统面临的挑战及前景[J]. 火箭推进, 2009, 35(1): 1-8, 15. doi: 10.3969/j.issn.1672-9374.2009.01.001

    ZHANG M Z, LI P, CHEN Z K. Challenge and perspective of combined cycle propulsion system[J]. Journal of Rocket Propulsion, 2009, 35(1): 1-8, 15. (in Chinese) doi: 10.3969/j.issn.1672-9374.2009.01.001
    [5]
    何国强, 吕翔, 刘佩进. 适合于临近空间飞行的组合动力技术[J]. 临近空间科学与工程, 2009(1).

    He G Q, LV X, LIU P J. Combined cycle engine suitable for near-space aircraft[J]. Near Space Science and Engineering, 2009(1).
    [6]
    南向谊, 王拴虎, 李平. 空气涡轮火箭发动机研究的进展及展望[J]. 火箭推进, 2008, 34(6): 31-35. doi: 10.3969/j.issn.1672-9374.2008.06.007

    NAN X Y, WANG S H, LI P. Investigation on status and prospect of air turbine rocket[J]. Journal of Rocket Propulsion, 2008, 34(6): 31-35. (in Chinese) doi: 10.3969/j.issn.1672-9374.2008.06.007
    [7]
    李文龙, 李平, 郭海波. 空气涡轮火箭发动机掺混燃烧研究进展[J]. 火箭推进, 2011, 37(6): 14-19. doi: 10.3969/j.issn.1672-9374.2011.06.004

    LI W L, LI P, GUO H B. Research progresses on turbulent mixing and combustion for air-turbo-rocket engine[J]. Journal of Rocket Propulsion, 2011, 37(6): 14-19. (in Chinese) doi: 10.3969/j.issn.1672-9374.2011.06.004
    [8]
    THOMAS M, BOSSARD J, OSTRANDER M. Addressing emerging tactical missile propulsion challenges with the Solid Propellant Air-Turbo-Rocket[C]/ 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, NV, USA. Reston, Virigina: AIAA, AIAA 2000-3309, 2000. doi: 10.2514/6.2000-3309
    [9]
    CHRISTENSEN K L. Comparison of methods for calculating turbine work in the air turbo rocket[J]. Journal of Propulsion and Power, 2001, 17(2): 256-261. DOI: 10.2514/2.5771
    [10]
    HASEGAWA H, KITAHARA K, INUKAI Y. Compact and high thrust air turbo ram engine[J]. Journal of the Japan Society for Aeronautical and Space Sciences, 2002, 50(582): 272-277. DOI: 10.2322/jjsass.50.272
    [11]
    SULLEREY R, PRADEEP A, KEDIA M. Performance comparison of air turbo rocket engine with different fuel systems[C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama. Reston, Virigina: AIAA, AIAA 2003-4417, 2003. doi: 10.2514/6.2003-4417
    [12]
    EDEFUR H, HAGLIND F, OLSSON S. Design of an air-launched tactical missile for three different propulsion systems: ATR, rocket and turbojet[C]//ASME Turbo Expo 2007: Power for Land, Sea, and Air, Montreal, Canada. 2009: 143-152. doi: 10.1115/GT2007-27844
    [13]
    TANATSUGU N, CARRICK P. Hypersonic and combined cycle propulsion for earth-to-orbit applications[C]//ICAS International Air and Space Symposium and Exposition: The Next 100 Years (2003), AIAA 2003-2586, 2003.
    [14]
    MIZOBATA K, KIMURA H, SUGIYAMA H, et al. Conceptual design of flight demonstrator vehicles for the ATREX engines[C]//12th AIAA International Space Planes and Hypersonic Systems and Technologies, Norfolk, Virginia. Reston, Virginia: AIAA, AIAA 2003-7028, 2003. doi: 10.2514/6.2003-7028
    [15]
    BUI T, LUX D, STENGER M, et al. New air-launched small missile (ALSM) flight testbed for hypersonic systems[C]//44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2006. doi: 10.2514/6.2006-221
    [16]
    MINATO R, HIGASHINO K, TANATSUGU N. Design and performance analysis of bio-ethanol fueled GG-cycle air turbo ramjet engine[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee. Reston, Virigina: AIAA, 2012. doi: 10.2514/6.2012-842
    [17]
    FERNÁNDEZ-VILLACÉ V, PANIAGUA G, STEELANT J. Installed performance evaluation of an air turbo-rocket expander engine[J]. Aerospace Science and Technology, 2014, 35: 63-79. DOI: 10.1016/j.ast.2014.03.005
    [18]
    朱岩, 马元, 张蒙正. 预冷空气涡轮火箭发动机氦循环系统的参数特性[J]. 航空动力学报, 2018, 33(8): 2016-2024.

    ZHU Y, MA Y, ZHANG M Z. Characteristic of helium cycle system parameters for pre-cooling air turbo rocket engine[J]. Journal of Aerospace Power, 2018, 33(8): 2016-2024. (in Chinese)
    [19]
    屠秋野, 陈玉春, 苏三买, 等. 固体推进剂吸气式涡轮火箭发动机的建模及特征研究[J]. 固体火箭技术, 2006, 29(5): 317-319, 345. doi: 10.3969/j.issn.1006-2793.2006.05.002

    TU Q Y, CHEN Y C, SU S M, et al. Study on modeling and features of solid propellant air-turbo-rocket[J]. Journal of Solid Rocket Technology, 2006, 29(5): 317-319, 345. (in Chinese) doi: 10.3969/j.issn.1006-2793.2006.05.002
    [20]
    陈湘, 陈玉春, 屠秋野, 等. 固体推进剂空气涡轮火箭发动机的非设计点性能研究[J]. 固体火箭技术, 2008, 31(5): 445-448. doi: 10.3969/j.issn.1006-2793.2008.05.005

    CHEN X, CHEN Y C, TU Q Y, et al. Research on off-design performance of solid propellant air-turbo-rocket[J]. Journal of Solid Rocket Technology, 2008, 31(5): 445-448. (in Chinese) doi: 10.3969/j.issn.1006-2793.2008.05.005
    [21]
    李成, 蔡元虎, 屠秋野. 吸气式空气涡轮冲压发动机的过渡态性能[J]. 航空动力学报, 2013, 28(2): 385-389.

    LI C, CAI Y H, TU Q Y. Transition state performance simulation of air-turbo-ramjet engine[J]. Journal of Aerospace Power, 2013, 28(2): 385-389. (in Chinese)
    [22]
    张留欢, 逯婉若, 王君, 等. 空气涡轮火箭组合发动机共同工作研究[J]. 航空动力学报, 2018, 33(3): 763-768.

    ZHANG L H, LU W R, WANG J, et al. Analysis of co-work for air turbo rocket[J]. Journal of Aerospace Power, 2018, 33(3): 763-768. (in Chinese)
    [23]
    朱岩, 吴弈臻, 马元, 等. 空气涡轮火箭发动机性能仿真分析[J]. 火箭推进, 2021, 47(3): 67-73. doi: 10.3969/j.issn.1672-9374.2021.03.009

    ZHU Y, WU Y Z, MA Y, et al. Simulation analysis of air turbo rocket engine[J]. Journal of Rocket Propulsion, 2021, 47(3): 67-73. (in Chinese) doi: 10.3969/j.issn.1672-9374.2021.03.009
  • Cited by

    Periodical cited type(3)

    1. 王子运,于航,张悦,谭慧俊,金毅,李鑫. 空天飞行器可调进气系统关键问题研究进展. 航空学报. 2024(11): 21-57 .
    2. 黄小容,陈云伟,周海晨. 全球高超声速技术发展态势分析. 中国科学院院刊. 2024(06): 1106-1120 .
    3. 郭葳. 不同负载条件下拖拉机发动机工作特性研究. 农机化研究. 2024(12): 250-254 .

    Other cited types(2)

Catalog

    Article views (818) PDF downloads (113) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return