Citation: | GAO K, GUO T Q, JI Z H, et al. Numerical simulations of airfoil gust response and alleviation based on split velocity method[J]. Acta Aerodynamica Sinica, 2023, 41(4): 84−95. DOI: 10.7638/kqdlxxb-2022.0123 |
[1] |
顾宁. 基于CFD的机翼阵风响应及减缓计算[D]. 南京: 南京航空航天大学, 2013.
GU N. CFD-based gust response and alleviation research of aircraft wing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese).
|
[2] |
HEINRICH R, REIMER L. Comparison of different approaches for gust modeling in the CFD Code TAU[C]//International Forum on Aeroelasticity & Structural Dynamics, 2013, Bristol, Großbritannien. https://elib.dlr.de/85834/1/IFASD-2013-Heinrich-36B.pdf
|
[3] |
TANG L, BAEDER J D. Adaptive Euler simulations of airfoil-vortex interaction[J]. International Journal for Numerical Methods in Fluids, 2007, 53(5): 777-792. Doi: 10.1002/fld.1306
|
[4] |
TANG L, BAEDER J D. A two-step grid redistribution method[J]. Computers & Fluids, 2003, 32(3): 323-336. DOI: 10.1016/S0045-7930(01)00092-5
|
[5] |
PARAMESWARAN V, BAEDER J D. Indicial aerodynamics in compressible flow-direct computational fluid dynamic calculations[J]. Journal of Aircraft, 1997, 34(1): 131-133. DOI: 10.2514/2.2146
|
[6] |
SITARAMAN J. CFD base unsteady aerodynamic modeling for rotor aeroelastic analysis[D]. University of Maryland, 2003.
|
[7] |
NING GU, ZHILIANG LU, et al. Simulation of viscous flows around a moving airfoil by field velocity method with viscous flux correction[J]. Advances in Applied Mathematics & Mechanics, 2012, 4(3): 294-310. doi: 10.1017/S2070073300001156
|
[8] |
WALES C, JONES D, GAITONDE A. Prescribed velocity method for simulation of aerofoil gust responses[J]. Journal of Aircraft, 2014, 52(1): 64-76. DOI: 10.2514/1.C032597
|
[9] |
赵永辉, 黄锐. 高等气动弹性力学与控制[M]. 北京: 科学出版社, 2015.
|
[10] |
BOULBRACHENE K, DE NAYER G, BREUER M. Assessment of two wind gust injection methods: field velocity vs. split velocity method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 218: 104790. doi: 10.1016/J.JWEIA.2021.104790
|
[11] |
WALES C, GAITONDE A, JONES D. Reduced order modelling for aeroelastic aerofoil response to a gust[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas. Reston, Virginia: AIAA, 2013: 790. doi: 10.2514/6.2013-790
|
[12] |
詹浩, 钱炜祺. 薄翼型阵风响应的数值模拟[J]. 航空学报, 2007, 28(3): 527-530.
ZHAN H, QIAN W Q. Numerical simulation of gust response for thin airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3): 527-530. (in Chinese)
|
[13] |
SINGH R, BAEDER J D. Direct calculation of three-dimensional indicial lift response using computational fluid dynamics[J]. Journal of Aircraft, 1997, 34(4): 465-471. DOI: 10.2514/2.2214
|
[14] |
HUNTLEY S J, JONES D, GAITONDE A. 2D and 3D gust response using a prescribed velocity method in viscous flows[C]//46th AIAA Fluid Dynamics Conference, Washington, D. C., Reston, Virginia: AIAA, 2016: 4259. doi: 10.2514/6.2016-4259
|
[15] |
ANN G. A dual-time method for the solution of the 2D unsteady Navier-Stokes equations on structured moving meshes[C]//13th Applied Aerodynamics Conference, San Diego, CA. Reston, Virginia: AIAA, 1995: 1877. doi: 10.2514/6.1995-1877
|
[16] |
SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit, Reno, NV. Reston, Virginia: AIAA, 1992: 439. doi: 10.2514/6.1992-439
|
[17] |
DING L, LU Z L, GUO T Q. An efficient dynamic mesh generation method for complex multi-block structured grid[J]. Advances in Applied Mathematics and Mechanics, 2014, 6(1): 120-134. DOI: 10.4208/aamm.2013.m199
|
[18] |
LI H, EKICI K. A novel approach for flutter prediction of pitch-plunge airfoils using an efficient one-shot method[J]. Journal of Fluids and Structures, 2018, 82: 651-671. DOI: 10.1016/j.jfluidstructs.2018.08.012
|
[19] |
杨超, 主编. 飞行器气动弹性原理 [M]. , 吴志刚, 万志强, 陈桂彬, 编著. 北京: 北京航空航天大学出版社, 2011.
|
[20] |
DA RONCH A, TANTAROUDAS N D, TIMME S, et al. Model reduction for linear and nonlinear gust loads analysis[C]//AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2013. doi: 10.2514/6.2013-1492
|
[21] |
DJAYAPERTAPA L, ALLEN C. Simulation of transonic flutter and active shockwave control[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2004, 14(4): 413-443. doi: 10.1108/0961553041053223
|
[22] |
DA RONCH A, BADCOCK K, WANG Y, et al. Nonlinear model reduction for flexible aircraft control design[C]//AIAA Atmospheric Flight Mechanics Conference, Minneapolis, Minnesota. Reston, Virginia: AIAA, 2012: 4404. doi: 10.2514/6.2012-4404
|
[23] |
DJAYAPERTAPA L, ALLEN C B, FIDDES S P. Two-dimensional transonic aeroservoelastic computations in the time domain[J]. International Journal for Numerical Methods in Engineering, 2001, 52(12): 1355-1377. doi: 10.1002/nme.258
|
[1] | NI Zao, HUANG Yihuan, XIE Haijun. High-speed wind tunnel test of static aeroelastic load for large aspect-ratioand high flexible wing of civil aircraft[J]. ACTA AERODYNAMICA SINICA, 2025, 43(6): 35-44. DOI: 10.7638/kqdlxxb-2024.0147 |
[2] | MEI Yang, SHI Zhiwei, ZHANG Weiyuan, LIAO Xueqi, GUO Pengyu, XIA Yuhang. Gust loads alleviation of flying wing aircraft based on jet flow control[J]. ACTA AERODYNAMICA SINICA. DOI: 10.7638/kqdlxxb-2024.0140 |
[3] | LI Dening, GAO Chuanqiang, LUO Fuqing, ZHANG Weiwei. Wind tunnel experimental study on flapping vibration of wind turbine airfoil trailing edge under windward load reduction conditions[J]. ACTA AERODYNAMICA SINICA, 2024, 42(10): 40-49. DOI: 10.7638/kqdlxxb-2023.0175 |
[4] | YU Zhihao, LI Chunhua, HUANG Shuilin, CHENG Yi, ZHAO Jinrui. The analysis on rotor aeroelastic loads characteristic in high speed condition[J]. ACTA AERODYNAMICA SINICA, 2024, 42(10): 30-39. DOI: 10.7638/kqdlxxb-2023.0162 |
[5] | LYU Ji'nan, GUO Li, FAN Xueling, CHEN Gang, LIU Ziqiang. Topology optimization of high-aspect-ratio wing section considering aeroelastic effect[J]. ACTA AERODYNAMICA SINICA, 2018, 36(6): 1047-1051. DOI: 10.7638/kqdlxxb-2018.0024 |
[6] | YANG Chao, YANG Lan, XIE Changchuan. Development of aerodynamic methods in aeroelastic analysis for high aspect ratio flexible wings[J]. ACTA AERODYNAMICA SINICA, 2018, 36(6): 1009-1018. DOI: 10.7638/kqdlxxb-2018.0237 |
[7] | YANG Ximing, LIU Nan, GUO Chengpeng, ZHANG Ying, SUN Jian, ZHANG Ge, YU Xianpeng, YU Jin'ge, HOU Liangxue. A survey of aeroelastic wind tunnel test techonlogy of flight vehicles[J]. ACTA AERODYNAMICA SINICA, 2018, 36(6): 995-1008. DOI: 10.7638/kqdlxxb-2018.0039 |
[8] | HAN Peng, LIU Xiaochen, HU Zanyuan, YAN Zhongwu. Grid-vector method for computation of aerodynamic loads on airplane components[J]. ACTA AERODYNAMICA SINICA, 2018, 36(4): 571-576. DOI: 10.7638/kqdlxxb-2016.0142 |
[9] | HOU Yingyu, FU Zhichao, ZHU Jian, LIU Ziqiang, LYU Ji'nan. Research on contactless loading method for aerodynamic force test[J]. ACTA AERODYNAMICA SINICA, 2018, 36(2): 357-361. DOI: 10.7638/kqdlxxb-2016.0035 |
[10] | REN Zhiyi, JIN Haibo, DING Yunliang. Flutter analysis based on the piecewise express of aerodynamic forces and the application of mode tracking technology[J]. ACTA AERODYNAMICA SINICA, 2014, 32(2): 246-251. DOI: 10.7638/kqdlxxb-2012.0183 |
1. |
熊英. 垂直阵风作用下机翼气动失效分析与预防. 失效分析与预防. 2024(05): 353-360+365 .
![]() |