GAO K, GUO T Q, JI Z H, et al. Numerical simulations of airfoil gust response and alleviation based on split velocity method[J]. Acta Aerodynamica Sinica, 2023, 41(4): 84−95. DOI: 10.7638/kqdlxxb-2022.0123
Citation: GAO K, GUO T Q, JI Z H, et al. Numerical simulations of airfoil gust response and alleviation based on split velocity method[J]. Acta Aerodynamica Sinica, 2023, 41(4): 84−95. DOI: 10.7638/kqdlxxb-2022.0123

Numerical simulations of airfoil gust response and alleviation based on split velocity method

More Information
  • Received Date: August 21, 2022
  • Revised Date: September 06, 2022
  • Accepted Date: September 12, 2022
  • Available Online: October 11, 2022
  • It is a common practice for domestic researchers to conduct Computational Fluid Dynamics (CFD) simulations of the aircraft gust response using the field velocity method (FVM). The more accurate split velocity method (SVM) proposed recently has become progressively popular for gust response analysis but is limited to rigid aircraft. This paper extends SVM to simulate the One-Minus-Cosine gust response of elastic airfoils and to alleviate the gust load. First, velocity fields obtained by solving unsteady Navier-Stokes equations in dynamic meshes are decomposed into the gust and background velocities. The control equations of SVM are derived, which show that FVM is an approximation of SVM when neglecting the source term. Next, the CFD/CSD coupling algorithms in the time domain are established for the elastic airfoil gust response prediction and the gust response alleviation based on pitch control. The One-Minus-Cosine gust responses of rigid and elastic NACA0012 airfoils agree well with the reference data. The effects of gust length, viscosity, and structural elasticity on gust response are also analyzed. Finally, the One-Minus-Cosine gust alleviation simulation of the elastic NACA64A010 airfoil is conducted. Results show that changing only the plunge speed is more efficient in alleviating the peak gust load; the combined control of plunge speed and pitch angle can alleviate the plunge and pitch movements. This work lays a foundation for further study on gust response and alleviation of three-dimensional aircraft.
  • [1]
    顾宁. 基于CFD的机翼阵风响应及减缓计算[D]. 南京: 南京航空航天大学, 2013.

    GU N. CFD-based gust response and alleviation research of aircraft wing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese).
    [2]
    HEINRICH R, REIMER L. Comparison of different approaches for gust modeling in the CFD Code TAU[C]//International Forum on Aeroelasticity & Structural Dynamics, 2013, Bristol, Großbritannien. https://elib.dlr.de/85834/1/IFASD-2013-Heinrich-36B.pdf
    [3]
    TANG L, BAEDER J D. Adaptive Euler simulations of airfoil-vortex interaction[J]. International Journal for Numerical Methods in Fluids, 2007, 53(5): 777-792. Doi: 10.1002/fld.1306
    [4]
    TANG L, BAEDER J D. A two-step grid redistribution method[J]. Computers & Fluids, 2003, 32(3): 323-336. DOI: 10.1016/S0045-7930(01)00092-5
    [5]
    PARAMESWARAN V, BAEDER J D. Indicial aerodynamics in compressible flow-direct computational fluid dynamic calculations[J]. Journal of Aircraft, 1997, 34(1): 131-133. DOI: 10.2514/2.2146
    [6]
    SITARAMAN J. CFD base unsteady aerodynamic modeling for rotor aeroelastic analysis[D]. University of Maryland, 2003.
    [7]
    NING GU, ZHILIANG LU, et al. Simulation of viscous flows around a moving airfoil by field velocity method with viscous flux correction[J]. Advances in Applied Mathematics & Mechanics, 2012, 4(3): 294-310. doi: 10.1017/S2070073300001156
    [8]
    WALES C, JONES D, GAITONDE A. Prescribed velocity method for simulation of aerofoil gust responses[J]. Journal of Aircraft, 2014, 52(1): 64-76. DOI: 10.2514/1.C032597
    [9]
    赵永辉, 黄锐. 高等气动弹性力学与控制[M]. 北京: 科学出版社, 2015.
    [10]
    BOULBRACHENE K, DE NAYER G, BREUER M. Assessment of two wind gust injection methods: field velocity vs. split velocity method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 218: 104790. doi: 10.1016/J.JWEIA.2021.104790
    [11]
    WALES C, GAITONDE A, JONES D. Reduced order modelling for aeroelastic aerofoil response to a gust[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas. Reston, Virginia: AIAA, 2013: 790. doi: 10.2514/6.2013-790
    [12]
    詹浩, 钱炜祺. 薄翼型阵风响应的数值模拟[J]. 航空学报, 2007, 28(3): 527-530.

    ZHAN H, QIAN W Q. Numerical simulation of gust response for thin airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3): 527-530. (in Chinese)
    [13]
    SINGH R, BAEDER J D. Direct calculation of three-dimensional indicial lift response using computational fluid dynamics[J]. Journal of Aircraft, 1997, 34(4): 465-471. DOI: 10.2514/2.2214
    [14]
    HUNTLEY S J, JONES D, GAITONDE A. 2D and 3D gust response using a prescribed velocity method in viscous flows[C]//46th AIAA Fluid Dynamics Conference, Washington, D. C., Reston, Virginia: AIAA, 2016: 4259. doi: 10.2514/6.2016-4259
    [15]
    ANN G. A dual-time method for the solution of the 2D unsteady Navier-Stokes equations on structured moving meshes[C]//13th Applied Aerodynamics Conference, San Diego, CA. Reston, Virginia: AIAA, 1995: 1877. doi: 10.2514/6.1995-1877
    [16]
    SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit, Reno, NV. Reston, Virginia: AIAA, 1992: 439. doi: 10.2514/6.1992-439
    [17]
    DING L, LU Z L, GUO T Q. An efficient dynamic mesh generation method for complex multi-block structured grid[J]. Advances in Applied Mathematics and Mechanics, 2014, 6(1): 120-134. DOI: 10.4208/aamm.2013.m199
    [18]
    LI H, EKICI K. A novel approach for flutter prediction of pitch-plunge airfoils using an efficient one-shot method[J]. Journal of Fluids and Structures, 2018, 82: 651-671. DOI: 10.1016/j.jfluidstructs.2018.08.012
    [19]
    杨超, 主编. 飞行器气动弹性原理 [M]. , 吴志刚, 万志强, 陈桂彬, 编著. 北京: 北京航空航天大学出版社, 2011.
    [20]
    DA RONCH A, TANTAROUDAS N D, TIMME S, et al. Model reduction for linear and nonlinear gust loads analysis[C]//AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2013. doi: 10.2514/6.2013-1492
    [21]
    DJAYAPERTAPA L, ALLEN C. Simulation of transonic flutter and active shockwave control[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2004, 14(4): 413-443. doi: 10.1108/0961553041053223
    [22]
    DA RONCH A, BADCOCK K, WANG Y, et al. Nonlinear model reduction for flexible aircraft control design[C]//AIAA Atmospheric Flight Mechanics Conference, Minneapolis, Minnesota. Reston, Virginia: AIAA, 2012: 4404. doi: 10.2514/6.2012-4404
    [23]
    DJAYAPERTAPA L, ALLEN C B, FIDDES S P. Two-dimensional transonic aeroservoelastic computations in the time domain[J]. International Journal for Numerical Methods in Engineering, 2001, 52(12): 1355-1377. doi: 10.1002/nme.258
  • Related Articles

    [1]NI Zao, HUANG Yihuan, XIE Haijun. High-speed wind tunnel test of static aeroelastic load for large aspect-ratioand high flexible wing of civil aircraft[J]. ACTA AERODYNAMICA SINICA, 2025, 43(6): 35-44. DOI: 10.7638/kqdlxxb-2024.0147
    [2]MEI Yang, SHI Zhiwei, ZHANG Weiyuan, LIAO Xueqi, GUO Pengyu, XIA Yuhang. Gust loads alleviation of flying wing aircraft based on jet flow control[J]. ACTA AERODYNAMICA SINICA. DOI: 10.7638/kqdlxxb-2024.0140
    [3]LI Dening, GAO Chuanqiang, LUO Fuqing, ZHANG Weiwei. Wind tunnel experimental study on flapping vibration of wind turbine airfoil trailing edge under windward load reduction conditions[J]. ACTA AERODYNAMICA SINICA, 2024, 42(10): 40-49. DOI: 10.7638/kqdlxxb-2023.0175
    [4]YU Zhihao, LI Chunhua, HUANG Shuilin, CHENG Yi, ZHAO Jinrui. The analysis on rotor aeroelastic loads characteristic in high speed condition[J]. ACTA AERODYNAMICA SINICA, 2024, 42(10): 30-39. DOI: 10.7638/kqdlxxb-2023.0162
    [5]LYU Ji'nan, GUO Li, FAN Xueling, CHEN Gang, LIU Ziqiang. Topology optimization of high-aspect-ratio wing section considering aeroelastic effect[J]. ACTA AERODYNAMICA SINICA, 2018, 36(6): 1047-1051. DOI: 10.7638/kqdlxxb-2018.0024
    [6]YANG Chao, YANG Lan, XIE Changchuan. Development of aerodynamic methods in aeroelastic analysis for high aspect ratio flexible wings[J]. ACTA AERODYNAMICA SINICA, 2018, 36(6): 1009-1018. DOI: 10.7638/kqdlxxb-2018.0237
    [7]YANG Ximing, LIU Nan, GUO Chengpeng, ZHANG Ying, SUN Jian, ZHANG Ge, YU Xianpeng, YU Jin'ge, HOU Liangxue. A survey of aeroelastic wind tunnel test techonlogy of flight vehicles[J]. ACTA AERODYNAMICA SINICA, 2018, 36(6): 995-1008. DOI: 10.7638/kqdlxxb-2018.0039
    [8]HAN Peng, LIU Xiaochen, HU Zanyuan, YAN Zhongwu. Grid-vector method for computation of aerodynamic loads on airplane components[J]. ACTA AERODYNAMICA SINICA, 2018, 36(4): 571-576. DOI: 10.7638/kqdlxxb-2016.0142
    [9]HOU Yingyu, FU Zhichao, ZHU Jian, LIU Ziqiang, LYU Ji'nan. Research on contactless loading method for aerodynamic force test[J]. ACTA AERODYNAMICA SINICA, 2018, 36(2): 357-361. DOI: 10.7638/kqdlxxb-2016.0035
    [10]REN Zhiyi, JIN Haibo, DING Yunliang. Flutter analysis based on the piecewise express of aerodynamic forces and the application of mode tracking technology[J]. ACTA AERODYNAMICA SINICA, 2014, 32(2): 246-251. DOI: 10.7638/kqdlxxb-2012.0183
  • Cited by

    Periodical cited type(1)

    1. 熊英. 垂直阵风作用下机翼气动失效分析与预防. 失效分析与预防. 2024(05): 353-360+365 .

    Other cited types(0)

Catalog

    Article views (188) PDF downloads (34) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return