LIU P Q, CHEN Y, ZHANG J, et al. Numerical study of the effects of corner expansion ratio and installation angle of guide vanes on flow fields in BHAW wind tunnel[J]. Acta Aerodynamica Sinica, 2023, 41(9): 82−95. DOI: 10.7638/kqdlxxb-2023.0006
Citation: LIU P Q, CHEN Y, ZHANG J, et al. Numerical study of the effects of corner expansion ratio and installation angle of guide vanes on flow fields in BHAW wind tunnel[J]. Acta Aerodynamica Sinica, 2023, 41(9): 82−95. DOI: 10.7638/kqdlxxb-2023.0006

Numerical study of the effects of corner expansion ratio and installation angle of guide vanes on flow fields in BHAW wind tunnel

More Information
  • Received Date: January 09, 2023
  • Revised Date: May 28, 2023
  • Accepted Date: June 03, 2023
  • Available Online: June 19, 2023
  • This article aims to provide technical support for designing the large closed-loop aeroacoustics wind tunnel with low turbulence intensity and low background noise at Beihang University (BHAW). The effects of the corner guide vanes angle on the flow fields are analyzed for several different expansion ratios by numerical simulations with the k-ω SST turbulence model, and the optimal installation angle of guide vanes for the BHAW wind tunnel is determined. Numerical results reveal that the pressure loss coefficient decreases first and then increases with the augmentation of the installation angle of guide vanes at each corner expansion ratio. The results further indicate the existence of a minimum pressure loss coefficient, and the installation angle of the guide vanes corresponding to the minimum value has a positive correlation with the corner expansion ratio. With various expansion ratios, the local pressure loss initially decreases and then increases with the guide vanes installation angle. The results demonstrate that the maximum friction loss coefficient occurs at the middle of the guide plate for a given installation angle; the installation angle mildly affects the flow around the central guide vanes (guide vanes 6, 7, and 8). With the increase of the corner expansion ratio, the flow velocity uniformity at the corner outlet deteriorates, and the installation angle of the guide vanes with the best flow guiding effect increases. By minimizing the total pressure loss coefficient and velocity deflection angle at the pipeline outlet, BHAW adopted an installation angle of 44° for the first corner with an expansion ratio of 1.17, an installation angle of 44° for the second corner with an expansion ratio of 1, an installation angle of 43° for the third corner with an expansion ratio of 1, and an installation angle of 42.5° for the fourth corner with an expansion ratio of 1. Such a strategy results in the dynamic pressure coefficient in the core area of the wind tunnel test section being less than 0.2% and the horizontal velocity deflection angle being less than 0.1°, justifying the aerodynamic design of BHAW.
  • [1]
    胡丹梅, 孙凯, 张志超. 回流式低速风洞流场品质的测试及分析[J]. 上海电力学院学报, 2016, 32(3): 211-215, 220. DOI: 10.3969/j.issn.1006-4729.2016.03.001(in Chinese)

    HU D M, SUN K, ZHANG Z C. Testing and analysis of the flow quality of the low speed closed circuit wind tunnel[J]. Journal of Shanghai University of Electric Power, 2016, 32(3): 211-215, 220. doi: 10.3969/j.issn.1006-4729.2016.03.001
    [2]
    王文奎, 石柏军. 低速风洞洞体设计[J]. 机床与液压, 2008, 36(5): 93-95.

    WANG W K, SHI B J. The design of low speed wind tunnel[J]. Machine Tool & Hydraulics, 2008, 36(5): 93-95. (in Chinese)
    [3]
    BERGMANN A. The aeroacoustic wind tunnel DNW-NWB[C]//18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), Colorado Springs, CO. Reston, Virigina: AIAA, 2012. doi: 10.2514/6.2012-2173
    [4]
    VAN DITSHUIZEN J C A, COURAGE G D, ROSS R, et al. Acoustic capabilities of the German-Dutch wind tunnel DNW[C]// 21st Aerospace Sciences Meeting, Reno, NV, USA, 1983. doi: 10.2514/6.1983-146
    [5]
    汤更生, 余永生, 李鹏. 5.5 m × 4 m低湍流度航空声学风洞气动设计的初步考虑[C]//大型飞机关键技术高层论坛暨中国航空学会学术年会, 深圳, 2007: 229-234.
    [6]
    KRÖBER G. Schaufelgitter zur Umlenkung von Flüssigkeitsströmungen mit geringem Energieverlust[J]. Ingenieur-Archiv , 1932, 3(5): 516-541. DOI: 10.1007/BF02079824
    [7]
    ZHANG T, ZHANG Y O , OUYANG H J, et al. Flow-induced noise and vibration analysis of a piping elbow with/without a guide vane[J]. Journal of Marine Science and Application , 2014, 13(4): 394-401. doi: 10.1007/s11804-014-1271-9
    [8]
    FRIEDMAN D, WESTPHAL W R. Experimental investigation of a 90 degree cascade diffusing bend with an area ratio of 1.45: 1 and with several inlet boundary layers[R]. NACA-TN-2668, 1952. https://ntrs.nasa.gov/api/citations/19930083771/downloads/19930083771.pdf
    [9]
    WOLF H. Messungen im Nachlauf eines Gleichdruckgitters für 90°-umlenkung[J]. Maschinen-bautechnik, 1957, 6(10): 539.
    [10]
    LINDGREN B, ÖSTERLUND J, JOHANSSON A V. Measurement and calculation of guide vane performance in expanding bends for wind-tunnels[J]. Experiments in Fluids, 1998, 24(3): 265-272. DOI: 10.1007/s003480050173
    [11]
    LINDGREN B. Development of guide-vanes for expanding corners with application in wind-tunnel design[D]. Mekanik, 1999.
    [12]
    LINDGREN B, JOHANSSON A V. Design and evaluation of a low-speed wind-tunnel with expanding corners[R]. Stockholm: Royal Institute of Technology Department of Mechanics, 2002: 1-47. https://www.mech.kth.se/~oso/papers/NEW_techrep.pdf
    [13]
    LINDGREN B, JOHANSSON A V. Evaluation of a new wind tunnel with expanding corners[J]. Experiments in Fluids, 2004, 36(1): 197-203. DOI: 10.1007/s00348-003-0705-y
    [14]
    REINKE N. A spatially optimized wind tunnel[R/OL]. arXiv: 1703.01079, 2017. doi: 10.48550/arXiv.1703.01079
    [15]
    华绍曾, 杨学宁, 等. 实用流体阻力手册[M]. 北京: 国防工业出版社, 1985.
    [16]
    SAHLIN A, JOHANSSON A V. Design of guide vanes for minimizing the pressure loss in sharp bends[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(8): 1934-1940. DOI: 10.1063/1.857923
    [17]
    雷 W H, 波普 A. 低速风洞试验[M]. 范结川, 祁炳春, 陈永魁, 等译. 北京: 国防工业出版社, 1977.
    [18]
    张震宇, 明晓. 低速风洞设计中的导流片损失问题[J]. 空气动力学学报, 2001, 19(1): 56-61. doi: 10.3969/j.issn.0258-1825.2001.01.008

    ZHANG Z Y, MING X. Research on energy loss of guide vane in low-speed wind tunnel[J]. Acta Aerodynamica Sinica, 2001, 19(1): 56-61. (in Chinese) doi: 10.3969/j.issn.0258-1825.2001.01.008
    [19]
    周刚, 汪家道, 陈大融. 小型水洞拐角导流片的数值设计[J]. 计算力学学报, 2010, 27(1): 102-109. doi: 10.7511/jslx20101017

    ZHOU G, WANG J D, CHEN D R. Numerical deign of guide vanes in elbow bends of a minitype high-speed water-tunnel[J]. Chinese Journal of Computational Mechanics, 2010, 27(1): 102-109. (in Chinese) doi: 10.7511/jslx20101017
    [20]
    胡彭俊, 谷正气, 鲍欢欢, 等. 基于流场品质的风洞导流片空间布置参数优化[J]. 中南大学学报(自然科学版), 2013, 44(4): 1390-1396. DOI: 10.3969/j.issn.1001-3997.2010.12.088(in Chinese)

    HU P J, GU Z Q, BAO H H, et al. Optimization of deflector layout parameters in wind tunnel based on flow field quality[J]. Journal of Central South University (Science and Technology), 2013, 44(4): 1390-1396. doi: 10.3969/j.issn.1001-3997.2010.12.088
    [21]
    王毅刚, 杨志刚, 倪晓强, 等. 汽车声学模型风洞消声拐角数值计算与试验[J]. 同济大学学报(自然科学版), 2011, 39(2): 271-275. DOI: 10.3969/j.issn.0253-374x.2011.02.022(in Chinese)

    WANG Y G, YANG Z G, NI X Q, et al. Numerical computation and experiment on corner silencer in automotive aero-acoustic model wind tunnel[J]. Journal of Tongji University (Natural Science), 2011, 39(2): 271-275. doi: 10.3969/j.issn.0253-374x.2011.02.022
    [22]
    周光坰, 严宗毅, 许世雄, 等. 流体力学[M]. 第2版. 北京: 高等教育出版社, 2000.
    [23]
    MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. DOI: 10.2514/3.12149
    [24]
    易星佑. 低阻损拐角导流片技术研究[D]. 绵阳: 中国空气动力研究与发展中心, 2009.
    [25]
    王福军. 计算流体动力学分析——CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.
    [26]
    刘沛清. 空气动力学[M]. 北京: 科学出版社, 2021: 182-185.
    [27]
    伍荣林, 王振羽. 风洞设计原理[M]. 北京: 北京航空学院出版社, 1985.
    [28]
    中国人民解放军总装备部. 低速风洞和高速风洞流场品质要求: GJB 1179A—2012[S]. , 2012.
  • Related Articles

    [1]LIU Liang, QIU Bo, ZENG Lei, YAO Jie, ZHU Mucheng. Numerical simulation of wall temperature effect on compressive corner flow[J]. ACTA AERODYNAMICA SINICA, 2021, 39(2): 117-124. DOI: 10.7638/kqdlxxb-2019.0134
    [2]SHANG Dongran, LIU Yanming, JI Lucheng, ZHU Rong. Simulation of corner separation control with ramp vortex generation[J]. ACTA AERODYNAMICA SINICA, 2020, 38(6): 1083-1092. DOI: 10.7638/kqdlxxb-2018.0197
    [3]WANG Dexin, CHU Youbiao, LIU Nansheng, LI Zhufei, YANG Jiming. Numerical investigation of shock wave/boundary layer interactions near a convex corner[J]. ACTA AERODYNAMICA SINICA, 2020, 38(1): 148-159. DOI: 10.7638/kqdlxxb-2019.0111
    [4]Xie Shaofei, Gong Jian, Gao Bo, Yang Xuejun, Shen Qing. Unsteady interaction between transitional boundary layer and flow separation in compression corner[J]. ACTA AERODYNAMICA SINICA, 2017, 35(1): 129-135. DOI: 10.7638/kqdlxxb-2015.0104
    [5]Ge Mingming, Zeng Ming, Wang Dongfang, Liu Jun. Numerical study for the hypersonic compression corner flow with ablation[J]. ACTA AERODYNAMICA SINICA, 2016, 34(5): 666-673. DOI: 10.7638/kqdlxxb-2015.0033
    [6]ZHAO Yunfei, LIU Wei, LIU Xu, DENG Xiaogang. Unsteady shock/boundary layer interaction of compression corner at movement conditions[J]. ACTA AERODYNAMICA SINICA, 2014, 32(5): 610-617. DOI: 10.7638/kqdlxxb-2014.0089
    [7]FU Song, CHEN Zhi-qiang, GUO Long-de, XIE Wei-ming. Experiments for reducing a flow field impacts on the light transmition by a guide plate[J]. ACTA AERODYNAMICA SINICA, 2010, 28(5): 576-581.
    [8]Aerodynamic experiment of high enthalpy expansion tube[J]. ACTA AERODYNAMICA SINICA, 2002, 20(4): 483-486.
    [9]Research on energy loss of guide vane in lowspeed wind tunnel[J]. ACTA AERODYNAMICA SINICA, 2001, 19(1): 56-61.
    [10]Zhang Jian, Zhou Lixing. Interactions of Turbulent Jets and Their Effects on Combustion and Mixing in a Sudden-Expansion Combustor[J]. ACTA AERODYNAMICA SINICA, 1999, 17(4): 365-370.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (242) PDF downloads (47) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return