Citation: | ZHOU X Y, HUANG J T, ZHANG S, et al. Aerodynamic modeling of “Neural”-Fly for fixed-wing aircraft considering strong wind interference[J]. Acta Aerodynamica Sinica, 2024, 42(3): 92−101. DOI: 10.7638/kqdlxxb-2023.0087 |
The strong and unsteady wind imposes severe challenges to the safe flight and aerodynamic prediction of the fixed-wing aircraft. Traditional aerodynamic models established in the wind-oriented coordinate system have a clear physical meaning but cannot be readily applied to unsteady windy environments. This paper proposes an innovative "neural"-fly aerodynamic modeling method based on deep meta-learning to accurately predict the aerodynamic forces and moments online for fixed-wing aircraft subjected to strong and unsteady wind. Based on variables in a coordinate system relative to the ground, this method decomposes the aerodynamic forces and moments into the sum of polynomial multiplication and constructs the common aerodynamic base functions by a three-step deep meta-learning algorithm using the Generative Adversarial Network. The application of the method for the fixed-wing aircraft F-18 demonstrates that the method can accurately predict the aerodynamic forces and moments under unknown wind conditions, laying a good foundation for real-time aerodynamic modeling.
[1] |
QU Y H, ZHANG Y T, ZHANG Y M. Optimal flight path planning for UAVs in 3-D threat environment[C]//2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA. IEEE, 2014: 149-155. doi: 10.1109/ICUAS.2014.6842250
|
[2] |
屈耀红, 于丽丽, 周迎, 等. 小型固定翼无人机多步长在线风场估计[J]. 西北工业大学学报, 2015, 33(5)750-756 doi: 10.3969/j.issn.1000-2758.2015.05.008
QU Y H, YU L L, ZHOU Y, et al. Multi? Step wind field estimation online of small Fixed? Wing UAVs[J]. Journal of Northwestern Polytechnical University, 2015, 33(5)750-756. DOI: 10.3969/j.issn.1000-2758.2015.05.008(in Chinese)
|
[3] |
O’CONNELL M, SHI G Y, SHI X C, et al. Neural-Fly enables rapid learning for agile flight in strong winds[J]. Science Robotics, 2022, 7(66): eabm6597. DOI: 10.1126/scirobotics.abm6597
|
[4] |
ANDERSON J R, 著. 计算流体力学入门[M]. 姚朝晖, 周强, 编译. 北京: 清华大学出版社, 2010.
|
[5] |
VENTURA DIAZ P, YOON S. High-fidelity computational aerodynamics of multi-rotor unmanned aerial vehicles[C]//2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida. Reston, Virginia: AIAA, 2018. doi: 10.2514/6.2018-1266
|
[6] |
陈文卓. 基于深度神经网络的气动数据建模方法研究[D]. 成都: 电子科技大学, 2021.
|
[7] |
龚正, 沈宏良. 非定常气动力的结构自适应神经网络建模方法[J]. 飞行力学, 2007, 25(4): 13-16. DOI: 10.3969/j.issn.1002-0853.2007.04.004(in Chinese)
GONG Z, SHEN H L. Structure self-adapting ANN method in modeling of unsteady aerodynamics[J]. Flight Dynamics, 2007, 25(4): 13-16. doi: 10.3969/j.issn.1002-0853.2007.04.004
|
[8] |
FARRELL W, KINZEL M. Modeling UAVs using CFD and machine learning methods[C]//AIAA SCITECH 2022 Forum, San Diego, CA & Virtual. Reston, Virginia: AIAA, 2022. doi: 10.2514/6.2022-2534
|
[9] |
LI K, KOU J Q, ZHANG W W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers[J]. Nonlinear Dynamics, 2019, 96(3): 2157-2177. DOI: 10.1007/s11071-019-04915-9
|
[10] |
陈海, 钱炜祺, 何磊. 基于深度学习的翼型气动系数预测[J]. 空气动力学学报, 2018, 36(2)294-299. DOI: 10.7638/kqdlxxb-2017.0098(in Chinese)
CHEN H, QIAN W Q, HE L. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica, 2018, 36(2)294-299. doi: 10.7638/kqdlxxb-2017.0098
|
[11] |
付军泉, 史志伟, 陈坤, 等. 基于EKF的实时循环神经网络在非定常气动力建模中的应用[J]. 空气动力学学报, 2018, 36(4): 658-663. DOI: 10.7638/kqdlxxb-2016.0131(in Chinese)
FU J Q, SHI Z W, CHEN K, et al. Applications of real-time recurrent neural network based on extended Kalman filter in unsteady aerodynamics modeling[J]. Acta Aerodynamica Sinica, 2018, 36(4): 658-663. doi: 10.7638/kqdlxxb-2016.0131
|
[12] |
王超, 王方剑, 王贵东, 等. 飞行器大攻角非定常气动特性神经网络建模[J]. 气体物理, 2020, 5(4)11-20DOI: 10.19527/j.cnki.2096-1642.0792(in Chinese)
WANG C, WANG F J, WANG G D, et al. Artificial neural network modeling of unsteady aerodynamic characteristics of aircraft at high attack angle[J]. Physics of Gases, 2020, 5(4)11-20. doi: 10.19527/j.cnki.2096-1642.0792
|
[13] |
MORELLI E A. Real-time global nonlinear aerodynamic modeling for learn-to-fly[C]//AIAA Atmospheric Flight Mechanics Conference, San Diego, California, USA. Reston, Virginia: AIAA, 2016. doi: 10.2514/6.2016-2010
|
[14] |
HEIM E H, VIKEN E, BRANDON J M, et al. NASA's learn-to-fly project overview[C]//2018 Atmospheric Flight Mechanics Conference, Atlanta, Georgia. Reston, Virginia: AIAA, 2018. doi: 10.2514/6.2018-3307
|
[15] |
RIDDICK S E. An overview of NASA's learn-to-fly technology development[C]// AIAA Scitech 2020 Forum, Orlando, FL, 6, 2020. https://ntrs.nasa.gov/api/citations/20200002805/downloads/20200002805.pdf doi: 10.2514/6.2020-0760
|
[16] |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
|
[17] |
马柳. 基于生成式对抗网络的空气动力学数据建模研究[D]. 成都: 电子科技大学, 2020.
|
[18] |
田青, 朱雅喃, 马闯. 基于深度学习的域适应方法综述[J]. 数据采集与处理, 2022, 37(3): 512-541. DOI: 10.16337/j.1004-9037.2022.03.004(in Chinese)
TIAN Q, ZHU Y N, MA C. Review on domain adaptation methods based on deep learning[J]. Journal of Data Acquisition & Processing, 2022, 37(3): 512-541. doi: 10.16337/j.1004-9037.2022.03.004
|
[19] |
GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]//32nd International Conference on International Conference on Machine Learning - Volume 37, New York: ACM, 2015: 1180-1189. doi: 10.5555/3045118.3045244
|
[20] |
GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. Journal of Machine Learning Research, 2016, 17(1): 2096–2030.https://dl.acm.org/doi/pdf/10.5555/2946645.2946704 doi: 10.5555/2946645.2946704
|
[21] |
SHI G Y, HÖNIG W, SHI X C, et al. Neural-Swarm2: planning and control of heterogeneous multirotor swarms using learned interactions[J]. IEEE Transactions on Robotics, 2022, 38(2): 1063-1079. DOI: 10.1109/TRO.2021.3098436
|
[22] |
BOWERS A H, PAHLE J W, WILSON R J, ET al. An overview of the nasa f-18 high alpha research vehicle[R]. NASA-TM-4772, 1996. https://ntrs.nasa.gov/api/citations/19970003009/downloads/19970003009.pdf
|