Processing math: 100%
WU J F, KONG W J, LI G S, et al. Progress and prospect on Reynolds number effects of advanced aircraft[J]. Acta Aerodynamica Sinica, 2024, 42(8): 35−59. DOI: 10.7638/kqdlxxb-2024.0063
Citation: WU J F, KONG W J, LI G S, et al. Progress and prospect on Reynolds number effects of advanced aircraft[J]. Acta Aerodynamica Sinica, 2024, 42(8): 35−59. DOI: 10.7638/kqdlxxb-2024.0063

Progress and prospect on Reynolds number effects of advanced aircraft

More Information
  • Received Date: May 12, 2024
  • Revised Date: June 23, 2024
  • Accepted Date: July 08, 2024
  • Available Online: August 18, 2024
  • Published Date: August 18, 2024
  • The Reynolds number effect is one of the key factors for predicting the aerodynamic characteristics of advanced aircraft since it affects flight performance and development costs. This paper provides a comprehensive discussion of three major aspects of the Reynolds number effects of aircraft. Firstly, the advantages and limitations of different research methods in exploring the Reynolds number effect are introduced, with particular emphasis on large low-temperature wind tunnels as an effective way to obtain the aerodynamic characteristics of real flight Reynolds numbers. Secondly, the nonlinearity and complexity of high-Reynolds-number flow fields and their effects on aerodynamic characteristics are thoroughly analyzed. This analysis encompass diverse scenarios including slot flows around multi-element airfoils, shock-wave/boundary layer interaction over supercritical airfoils, high-angle-of-attack fighters, and inlet performance of flying wing configurations. Finally, correction methods for the Reynolds number effects are discussed, underscoring the importance of integrating wind tunnel experiments, numerical simulations, and flight tests. Based on a rigorous analysis of existing correction models' performance, insights are provided for developing more precise correction frameworks. In summary, the overview presented in this paper serves as a valuable reference for deepening our understanding of high Reynolds number effects, advancing the development of efficient simulation methods, enhancing aircraft design levels, and provides technical guidance for advanced aircraft development.

  • [1]
    WAHLS R. The national transonic facility - A research retrospective[C]//39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA. Reston, Virigina: AIAA, 2001: AIAA2001-754.
    [2]
    KANDLIKAR S G, GRANDE W J. Evolution of microchannel flow passages: Thermohydraulic performance and fabrication technology[J]. Heat Transfer Engineering, 2003, 24(1): 317. doi: 10.1080/01457630304040
    [3]
    NATHMAN J, NIEHAUS J, STURGIS J C, et al. Preliminary study of heat transfer correlation development and pressure loss behavior in curved high aspect ratio coolant channels[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT. Reston, Virigina: AIAA, 2008: AIAA2008-5240.
    [4]
    范洁川, 于涛. 建造中的我国低速增压风洞[J]. 实验流体力学, 2005, 19(3): 16.

    FAN J C, YU T. Low speed pressurized wind tunnel at home which is building[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 16(in Chinese).
    [5]
    Baals D D. High reynolds number research[R]. NASA CP 2009, 1977.
    [6]
    GOODYER M J, KILGORE R A. High-reynolds-number cryogenic wind tunnel[J]. AIAA Journal, 1973, 11(5): 613619. doi: 10.2514/3.50500
    [7]
    GHAJAR A J, TAM L M, TAM S C. Improved heat transfer correlation in the transition region for a circular tube with three inlet configurations using artificial neural networks[J]. Heat Transfer Engineering, 2004, 25(2): 3040. doi: 10.1080/01457630490276097
    [8]
    KILGORE R. Evolution and development of cryogenic wind tunnels[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virginia: AIAA, 2005: 457.
    [9]
    KILGORE R A. Cryogenic wind tunnels - A brief review[M]. Boston, MA: Springer, 1994: 63-70.
    [10]
    WEGENER P P. Cryogenic transonic wind tunnels and the condensation of nitrogen[J]. Experiments in Fluids, 1991, 11(5): 333338. doi: 10.1007/BF00194865
    [11]
    KILGORE R A. Cryogenic wind tunnels for aerodynamic testing[M]. New York: Springer, 1998: 66-80.
    [12]
    PARYZ R. Upgrades at the Nasa Langley Research Center National Transonic Facility[C]// 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee: AIAA, 2012.
    [13]
    HARTZUIKER J P. The European transonic wind-tunnel ETW: A cryogenic solution[J]. The Aeronautical Journal, 1984, 88(879): 379394. doi: 10.1017/s0001924000014433
    [14]
    GREEN J, QUEST J. A short history of the European Transonic Wind Tunnel ETW[J]. Progress in Aerospace Sciences, 2011, 47(5): 319368. doi: 10.1016/j.paerosci.2011.06.002
    [15]
    QUEST J. ETW: Simulations of true flight behaviour[J]. Air & Space Europe, 2001, 3(3−4): 115118. doi: 10.1016/s1290-0958(01)90071-1
    [16]
    WALDMANN A, GANSEL P P, LUTZ T, et al. Unsteady wake of the NASA common research model in low-speed stall[J]. Journal of Aircraft, 2015, 53(4): 10731086. doi: 10.2514/1.C033413
    [17]
    MINECK R. Reynolds number effects on the performance of ailerons and spoilers[C]//39th Aerospace Sciences Meeting and Exhibit, Reno, NV. Reston, Virginia: AIAA, 2001: 908.
    [18]
    WALDMANN A, EHRLE M C, KLEINERT J, et al. Mach and Reynolds number effects on transonic buffet on the XRF-1 transport aircraft wing at flight Reynolds number[J]. Experiments in Fluids, 2023, 64(5): 102. doi: 10.1007/s00348-023-03642-7
    [19]
    FEY U, EGAMI Y, KONRATH R, et al. Advanced measurement techniques for high Reynolds number testing in cryogenic wind tunnels[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida. Reston, Virginia: AIAA, 2010: 1301.
    [20]
    LOOSE S, RICHARD H, BOSBACH J, et al. Optical measurement techniques for high Reynolds number train investigations[J]. Experiments in Fluids, 2006, 40(4): 643653. doi: 10.1007/s00348-005-0104-7
    [21]
    WRIGHT M. Design, Manufacturing, & Commissioning of a new NLR Half Model Balance for ETW[C]//53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida. Reston, Virginia: AIAA, 2015: 1788.
    [22]
    QUIX H, SEMMELMANN J, WRIGHT M. Model deformation measurement capabilities at ETW[C]//31st AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Dallas, TX. Reston, Virginia: AIAA, 2015: 2562.
    [23]
    CHAN D T, HOOKER J R, WICK A T, et al. Transonic semispan aerodynamic testing of the hybrid wing body with over wing nacelles in the national transonic facility[C]// 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas. Reston, Virginia: AIAA, 2017: 0098.
    [24]
    AHLEFELDT T. Microphone array measurement in European transonic wind tunnel at flight Reynolds numbers[J]. AIAA Journal, 2016, 55(1): 3648. doi: 10.2514/1.J055262
    [25]
    AHLEFELDT T, QUEST J. Real-flight Reynolds number microphone-array measurements on a scaled model in ETW[C]//52nd Aerospace Sciences Meeting, National Harbor, Maryland. Reston, Virginia: AIAA, 2014: 1483.
    [26]
    SPEHR C, AHLEFELDT T. Comparison of microphone array measurements in the closed test section of LSWT and ETW[J]. CEAS Aeronautical Journal, 2019, 10(1): 267285. doi: 10.1007/s13272-019-00386-1
    [27]
    LUTZ T, GANSEL P P, WALDMANN A, et al. Prediction and measurement of the common research model wake at stall conditions[J]. Journal of Aircraft, 2015, 53(2): 501514. doi: 10.2514/1.C033351
    [28]
    ZIMMERMANN D M, WALDMANN A, LUTZ T, et al. Development of flow structures in the near-field wake region of the common research model[J]. CEAS Aeronautical Journal, 2018, 9(2): 347359. doi: 10.1007/s13272-016-0222-3
    [29]
    KONRATH R. High-speed PIV applied to wake of NASA CRM model in ETW under high re-number stall conditions for sub- and transonic speeds[C]//53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida. Reston, Virginia: AIAA, 2015: 1095.
    [30]
    KONRATH R. Flow field measurements by PIV at high Reynolds numbers[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas. Reston, Virginia: AIAA, 2013: 869.
    [31]
    BOSBACH J, KONRATH R, GEISLER R, et al. Capturing unsteady flow phenomena at high speed stall conditions by adaptation and application of cryogenic PIV[C]//AIAA SCITECH 2024 Forum, Orlando, FL. Reston, Virginia: AIAA, 2024: 2665.
    [32]
    BURNS R, DANEHY P M, JONES S B, et al. Application of FLEET velocimetry in the NASA langley 0.3-meter transonic cryogenic tunnel[C]//31st AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Dallas, TX. Reston, Virginia: AIAA, 2015: 2566.
    [33]
    FISHER J M, BRAUN J, MEYER T R, et al. Application of femtosecond laser electronic excitation tagging (FLEET) velocimetry in a bladeless turbine[J]. Measurement Science and Technology, 2020, 31(6): 064005. doi: 10.1088/1361-6501/ab7062
    [34]
    KLEIN C, YORITA D, HENNE U, et al. Application of Temperature Sensitive Paint to investigate laminar-to-turbulent transition on nacelles[C]//AIAA Scitech 2020 Forum, Orlando, FL. Reston, Virginia: AIAA, 2020: 1608.
    [35]
    KLEIN C. Boundary layer transition detection on wind tunnel models in PETW during continuous pitch traverse[C]//AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019: 1180.
    [36]
    KLEIN C, HENNE U, DEISUKE Y, et al. Application of carbon nanotubes and temperature sensitive paint for the detection of boundary layer transition under cryogenic conditions (invited)[C]//55th AIAA Aerospace Sciences Meeting, Grapevine, Texas. Reston, Virginia: AIAA, 2017: 0336.
    [37]
    KLEIN C. Development of a highly sensitive temperature-sensitive paint for measurements under cryogenic temperatures (100 - 160 K) conditions[C]//54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA, 2016: 0650.
    [38]
    EGAMI Y, FEY U, KLEIN C, et al. Development of new two-component temperature-sensitive paint (TSP) for cryogenic testing[J]. Measurement Science and Technology, 2012, 23(11): 115301. doi: 10.1088/0957-0233/23/11/115301
    [39]
    KLEIN C, YORITA D, HENNE U, et al. Unsteady pressure measurements by means of PSP in cryogenic conditions[C]//AIAA Scitech 2020 Forum, Orlando, FL. Reston, Virginia: AIAA, 2020: 0122.
    [40]
    YORITA D, KLEIN C, HENNE U, et al. Successful application of cryogenic pressure sensitive paint technique at ETW[C]//2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida. Reston, Virginia: AIAA, 2018: 1136.
    [41]
    YORITA D, KLEIN C, HENNE U, et al. Investigation of a pressure sensitive paint technique for ETW (invited)[C]// 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas. Reston, Virginia: AIAA, 2017: 0335.
    [42]
    LYNDE M N, CAMPBELL R L, VIKEN S A. Additional findings from the common research model natural laminar flow wind tunnel test[C]//AIAA Aviation 2019 Forum, Dallas, Texas. Reston, Virginia: AIAA, 2019: 3292.
    [43]
    CALKINS F T, NICHOLSON D E, VONDEETZEN S, et al. Low & high speed cryogenic testing of a wind tunnel model with remote control actuation (RCA) spoiler[C]//AIAA Aviation 2019 Forum, Dallas, Texas. Reston, Virginia: AIAA, 2019: 2975.
    [44]
    张伟, 高荣, 张双喜, 等. 0.3 m低温风洞液氮供给系统研制[J]. 航空动力学报, 2020, 35(5): 10091017. doi: 10.13224/j.cnki.jasp.2020.05.013

    ZHANG W, GAO R, ZHANG S X, et al. Development of liquid nitrogen supplying system of 0.3 m cryogenic wind tunnel[J]. Journal of Aerospace Power, 2020, 35(5): 10091017(in Chinese). doi: 10.13224/j.cnki.jasp.2020.05.013
    [45]
    陈振华, 聂徐庆, 杨文国. 小型低温风洞压缩机转子结构设计[J]. 实验流体力学, 2018, 32(1): 98104. doi: 10.11729/syltlx20170094

    CHEN Z H, NIE X Q, YANG W G. Structural design of a small cryogenic wind tunnel compressor rotor[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 98104(in Chinese). doi: 10.11729/syltlx20170094
    [46]
    廖达雄, 黄知龙, 陈振华, 等. 大型低温高雷诺数风洞及其关键技术综述[J]. 实验流体力学, 2014, 28(2): 16,20. doi: 10.11729/syltlx20130102

    LIAO D X, HUANG Z L, CHEN Z H, et al. Summary of large-scale low temperature and high Reynolds number wind tunnel and its key technologies[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 16,20(in Chinese). doi: 10.11729/syltlx20130102
    [47]
    WICK A T, HOOKER J R, WALKER J, et al. Hybrid wing body performance validation at the national transonic facility[C]// 55th AIAA Aerospace Sciences Meeting, Texas. Reston, Virginia: AIAA, 2017. doi: 10.2514/6.2017-0099
    [48]
    PETTERSSON K, RIZZI A. Estimating Reynolds number scaling and windtunnel boom effects with the help of CFD methods[C]//24th AIAA Applied Aerodynamics Conference, San Francisco, California. Reston, Virginia: AIAA, 2006: 3162.
    [49]
    WANG Y J, LIU D W, XU X, et al. Investigation of Reynolds number effects on aerodynamic characteristics of a transport aircraft[J]. Aerospace, 2021, 8(7): 177. doi: 10.3390/aerospace8070177
    [50]
    BIER N, ROHLMANN D, RUDNIK R. Numerical maximum lift predictions of a realistic commercial aircraft in landing configuration[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee. Reston, Virginia: AIAA, 2012: 279.
    [51]
    VRCHOTA P, PRACHAŘ A. Using wing model deformation for improvement of CFD results of ESWIRP project[J]. CEAS Aeronautical Journal, 2018, 9(2): 361372. doi: 10.1007/s13272-018-0286-3
    [52]
    KEYE S, RUDNIK R. Validation of wing deformation simulations for the NASA CRM model using fluid-structure interaction computations[C]//53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida. Reston, Virginia: AIAA, 2015: 0619.
    [53]
    KÖNIG B, FARES E, WRIGHT M. Lattice Boltzmann simulation of the ETW slotted wall test section[C]//NATO AVT-284, Research Specialists-Meeting on Advanced Wind Tunnel Boundary Simulation I, 2018.
    [54]
    KURSAKOV I A, GORBUSHIN A R, BOSNYAKOV S M, et al. A numerical approach for assessing slotted wall interference using the CRM model at ETW[J]. CEAS Aeronautical Journal, 2018, 9(2): 319338. doi: 10.1007/s13272-017-0248-1
    [55]
    LUTZ T. Going for experimental and numerical unsteady wake analyses combined with wall interference assessment by using the NASA CRM-model in ETW[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas. Reston, Virginia: AIAA, 2013: 871.
    [56]
    WANG W, YAN C, WANG S, et al. An efficient, robust and automatic overlapping grid assembly approach for partitioned multi-block structured grids[J]. Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(4): 12171236. doi: 10.1177/0954410017749865
    [57]
    YU Y G, YU J, ZHOU Z, et al. Numerical simulation for DLR-F11 based on PMB3D solver with structural overlapped grid[C]//Asia-Pacific International Symposium on Aerospace Technology. Singapore: Springer, 2019: 711−722.
    [58]
    ZHANG X, ZHANG H, LI J. Numerical investigation of stall characteristics of common research model configuration based on zonal detached eddy simulation method[J]. Aerospace, 2023, 10(9): 817. doi: 10.3390/aerospace10090817
    [59]
    YAMAZAKI W, YAMAGISHI S, UENO M. Investigation of indirect Reynolds number effect via computational fluid dynamics simulations[J]. Journal of Aircraft, 2018, 55(5): 18051816. doi: 10.2514/1.C034654
    [60]
    ZHAO H, YANG Y Y, ZHANG Y B, et al. Numerical simulation of Reynolds number effect of transport aircraft considering low-temperature real gas effect[J]. Highlights in Science, Engineering and Technology, 2023, 77: 156161. doi: 10.54097/hset.v77i.14446
    [61]
    阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5): 829857. doi: 10.7638/kqdlxxb-2022.0072

    YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5): 829857(in Chinese). doi: 10.7638/kqdlxxb-2022.0072
    [62]
    JEFFREY S, ABDOLLAH K, JUAN A, et al. CFD vision 2030 Study: A path to revolutionary computational aerosciences: NF1676L-18332 [R]. NASA, 2014.
    [63]
    JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes[C]//14th Fluid and Plasma Dynamics Conference, Palo Alto, CA. Reston, Virginia: AIAA, 1981: 1259.
    [64]
    LIU J, CHEN J Z, YUAN H C. Reynolds number effect on aerodynamic and starting characteristics of a two-dimensional hypersonic inlet[J]. Aerospace, 2022, 9(12): 811. doi: 10.3390/aerospace9120811
    [65]
    马明生, 张耀冰, 邓有奇, 等. 运输机机翼、机身和翼身组合体气动特性雷诺数效应的数值模拟研究[J]. 空气动力学学报, 2011, 29(2): 194198,204.

    MA M S, ZHANG Y B, DENG Y Q, et al. Investigation of Reynolds number effects on transport aircraft’s wing, fuselage and wing-body by numerical simulation[J]. Acta Aerodynamica Sinica, 2011, 29(2): 194198,204(in Chinese).
    [66]
    XIE Z X, XIAO Z X, WANG G, et al. Direct numerical simulation of the effects of Reynolds number in Mach 2.9 flows over an expansion–compression corner[J]. Physics of Fluids, 2022, 34(12): 120. doi: 10.1063/5.0131991
    [67]
    CIMARELLI A, CORSINI R, STALIO E. Reynolds number effects in separating and reattaching flows with passive scalar transport[J]. Journal of Fluid Mechanics, 2024, 984: A20. doi: 10.1017/jfm.2024.215
    [68]
    CAO Y, TAMURA T. Large-eddy simulation study of Reynolds number effects on the flow around a wall-mounted hemisphere in a boundary layer[J]. Physics of Fluids, 2020, 32(2): 025109. doi: 10.1063/1.5142371
    [69]
    POSA A, BALARAS E. A numerical investigation about the effects of Reynolds number on the flow around an appended axisymmetric body of revolution[J]. Journal of Fluid Mechanics, 2020, 884: A41. doi: 10.1017/jfm.2019.961
    [70]
    陈浩, 袁先旭, 毕林, 等. 基于RANS/LES混合方法的分离流动模拟[J]. 航空学报, 2020, 41(8): 177188. doi: 10.7527/S1000-6893.2020.23642

    CHEN H, YUAN X X, BI L, et al. Simulation of separated flow based on RANS/LES hybrid method[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 177188(in Chinese). doi: 10.7527/S1000-6893.2020.23642
    [71]
    徐一航, 陈少松. 基于γ-~Reθt转捩模型的高雷诺数旋转圆柱绕流数值研究[J/OL]. 应用力学学报, 2024: 1−13.

    XU Y H, CHEN S S. Numerical study on the flow around a rotating cylinder with high Reynolds number on γ-˜Reθt model[J]. Chinese Journal of Applied Mechanics, 2024: 1−13(in Chinese). https://link.cnki.net/urlid/61.1112.o3.20240329.1641.005.
    [72]
    RUDNIK R, RECKZEH D, QUEST J. HINVA - High lift INflight VAlidation - Project overview and status[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee. Reston, Virginia: AIAA, 2012: 106.
    [73]
    RUDNIK R, SCHWETZLER D. High lift INflight VAlidation (HINVA) - Overview about the 2nd flight test campaign[C]//54th AIAA Aerospace Sciences Meeting, San Diego, California, USA. Reston, Virginia: AIAA, 2016: 0041.
    [74]
    JIN X W, CHENG P, CHEN W L, et al. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder[J]. Physics of Fluids, 2018, 30(4): 047105. doi: 10.1063/1.5024595
    [75]
    SUBEL A, CHATTOPADHYAY A, GUAN Y F, et al. Data-driven subgrid-scale modeling of forced Burgers turbulence using deep learning with generalization to higher Reynolds numbers via transfer learning[J]. Physics of Fluids, 2021, 33(3): 031702. doi: 10.1063/5.0040286
    [76]
    BHATTACHARYA S, VERMA M K, BHATTACHARYA A. Predictions of Reynolds and Nusselt numbers in turbulent convection using machine-learning models[J]. Physics of Fluids, 2022, 34(2): 025102. doi: 10.1063/5.0083943
    [77]
    WANG Z Y, ZHANG W W. A unified method of data assimilation and turbulence modeling for separated flows at high Reynolds numbers[J]. Physics of Fluids, 2023, 35(2): 025124. doi: 10.1063/5.0136420
    [78]
    闫重阳, 张宇飞, 陈海昕. 基于离散伴随的流场反演在湍流模拟中的应用[J]. 航空学报, 2021, 42(4): 332343. doi: 10.7527/S1000-6893.2020.24695

    YAN C Y, ZHANG Y F, CHEN H X. Application of field inversion based on discrete adjoint method in turbulence modeling[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 332343(in Chinese). doi: 10.7527/S1000-6893.2020.24695
    [79]
    WILD J. Experimental investigation of Mach- and Reynolds-number dependencies of the stall behavior of 2-element and 3-element high-lift wing sections[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee. Reston, Virigina: AIAA, 2012: AIAA2012-108.
    [80]
    DENG N, QU Q L, AGARWAL R K. Numerical study of the aerodynamics of a rectangular multi-element wing in ground effect[C]//2018 Applied Aerodynamics Conference, Atlanta, Georgia. Reston, Virginia: AIAA, 2018: 4115.
    [81]
    FEJTEK I. Summary of code validation results for a multiple element airfoil test case[C]// 28th Fluid Dynamics Conference, Snowmass Village, CO, USA: AIAA, 1997.
    [82]
    KARAMPELAS S. High Reynolds number flow past a flapping multi-element airfoil[C]//43rd Fluid Dynamics Conference, San Diego, CA. Reston, Virginia: AIAA, 2013: AIAA2013-2470.
    [83]
    李孝伟, 乔志德. 多段翼型大迎角下主翼、襟翼上的分离流及缝道流动[J]. 航空学报, 1999, 20(1): 55.

    LI X W, QIAO Z D. Separated flows over main element and flap of multielement airfoil at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(1): 55(in Chinese).
    [84]
    焦予秦, 熊楠. 多段翼型缝翼流动速度的定常和非定常特性研究[J]. 应用力学学报, 2018, 35(3): 496502. doi: 10.11776/cjam.35.03.A014

    JIAO Y Q, XIONG N. Study on steady and unsteady characteristics of flow velocity of multi-element airfoil slat[J]. Chinese Journal of Applied Mechanics, 2018, 35(3): 496502(in Chinese). doi: 10.11776/cjam.35.03.A014
    [85]
    张弓, 高永卫. GAW-1两段翼型缝道参数优化中的雷诺数影响研究[J]. 科学技术与工程, 2007, 7(13): 31943197.

    ZHANG G, GAO Y W. Experimental investigation of the Reynolds number effects on slot parameters of GAW-1 airfoil[J]. Science Technology and Engineering, 2007, 7(13): 31943197(in Chinese).
    [86]
    刘亦鹏, 陈莹, 高云海, 等. 雷诺数对增升装置流动特性影响的计算研究Ⅱ: 缝道流动特性[J]. 民用飞机设计与研究, 2018(1): 3951. doi: 10.19416/j.cnli.1674-9804.2018.01.008

    LIU Y P, CHEN Y, GAO Y H, et al. Calculation research on the effect of Reynolds number on the high lift device flow characteristcs Ⅱ—Slot flow characteristics[J]. Civil Aircraft Design & Research, 2018(1): 3951(in Chinese). doi: 10.19416/j.cnli.1674-9804.2018.01.008
    [87]
    ELSENAAR A. Observed Reynolds number effects on airfoils and high aspect ratio wings at transonic flow condition[R]. 1998.
    [88]
    XU X, LIU D W, CHEN D H, et al. Reynolds number effects of supercritical airfoil with mini-TED in transonic flow[J]. Journal of Physics: Conference Series, 2020, 1507(8): 082010. doi: 10.1088/1742-6596/1507/8/082010
    [89]
    XU X, LIU D W, CHEN D H, et al. Reynolds number effect investigation of shock wave on supercritical airfoil[J]. Applied Mechanics and Materials, 2014, 548−549: 520524. doi: 10.4028/www.scientific.net/amm.548-549.520
    [90]
    刘大伟, 陈德华, 王元靖. 基于风洞试验的超临界翼型雷诺数效应研究[C]//第13届中国系统仿真技术及其应用学术年会论文集, 2011.
    [91]
    栗莉, 綦龙, 罗帅, 等. 雷诺数对超临界翼型气动性能的影响[J]. 教练机, 2017(2): 3945.

    LI L, QI L, LUO S, et al. The research of Reynolds number effects on aerodynamics characteristics of supercritical airfoils[J]. Trainer, 2017(2): 3945(in Chinese).
    [92]
    程厚梅, 杨希明, 孙绍鹏. 战斗机模型大迎角风洞实验的雷诺数影响实验研究[J]. 流体力学实验与测量, 1999, 13(2): 3037.

    CHENG H M, YANG X M, SUN S P. The experimental investigation on Reynolds number effects on aerodynamics data of fighter models in wind tunnels at high angles of attack[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(2): 3037(in Chinese).
    [93]
    王海峰, 展京霞, 陈科, 等. 战斗机大迎角气动特性研究技术的发展与应用[J]. 空气动力学学报, 2022, 40(1): 125. doi: 10.7638/kqdlxxb-2021.0306

    WANG H F, ZHAN J X, CHEN K, et al. Development and application of aerodynamic research technologies for fighters at high angle of attack[J]. Acta Aerodynamica Sinica, 2022, 40(1): 125(in Chinese). doi: 10.7638/kqdlxxb-2021.0306
    [94]
    XU G L, JIANG X, LIU G. Delayed detached eddy simulations of fighter aircraft at high angle of attack[J]. Acta Mechanica Sinica, 2016, 32(4): 588603. doi: 10.1007/s10409-016-0565-3
    [95]
    TOMEK W, HALL R, WAHLS R, et al. Investigation of Reynolds number effects on a generic fighter configuration in the National Transonic Facility[C]//40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA. Reston, Virigina: AIAA, 2002: AIAA2002-418.
    [96]
    张培红, 周乃春, 邓有奇, 等. 雷诺数对飞机气动特性的影响研究[J]. 空气动力学学报, 2012, 30(6): 693698.

    ZHANG P H, ZHOU N C, DENG Y Q, et al. The effects of Reynolds number on airplane aerodynamic characteristics[J]. Acta Aerodynamica Sinica, 2012, 30(6): 693698(in Chinese).
    [97]
    RUMSEY C L, SLOTNICK J P, LONG M, et al. Summary of the first AIAA CFD high-lift prediction workshop[J]. Journal of Aircraft, 2011, 48(6): 20682079. doi: 10.2514/1.c031447
    [98]
    ELIASSON P. Investigation of a half-model high-lift configuration in a wind tunnel[J]. Journal of Aircraft, 2008, 45(1): 2937. doi: 10.2514/1.34054
    [99]
    RUDNIK R, GERMAIN E. Reynolds number scaling effects on the European high-lift configurations[J]. Journal of Aircraft, 2009, 46(4): 11401151. doi: 10.2514/1.36487
    [100]
    周林. 雷诺数对大展弦比运输类飞机纵向气动特性的影响研究[D]. 北京航空航天大学, 2014.
    [101]
    SLEPPY M A. Summary of the 2012 boeing 787 half span model high speed test at the European transonic windtunnel[C]//2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida. Reston, Virginia: AIAA, 2018: AIAA2018-1137.
    [102]
    CARTER M B, PATEL D. Blended-Wing-Body transonic aerodynamics: Summary of ground tests and sample results: LF99-8272[R]. NASA, 2009.
    [103]
    张耀冰, 周乃春, 陈江涛. 小展弦比飞翼标模雷诺数影响数值模拟研究[J]. 空气动力学学报, 2015, 33(3): 279288. doi: 10.7638/kqdlxxb-2015.0051

    ZHANG Y B, ZHOU N C, CHEN J T. Numerical investigation of Reynolds number effects on a low-aspect-ratio flying-wing model[J]. Acta Aerodynamica Sinica, 2015, 33(3): 279288(in Chinese). doi: 10.7638/kqdlxxb-2015.0051
    [104]
    LIN P, WU J F, LU L S, et al. Investigation on the Reynolds number effect of a flying wing model with large sweep angle and small aspect ratio[J]. Aerospace, 2022, 9(9): 523. doi: 10.3390/aerospace9090523
    [105]
    VASSBERG J. A unified baseline grid about the common research model wing/body for the fifth AIAA CFD drag prediction workshop (invited)[C]//29th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii. Reston, Virigina: AIAA, 2011: AIAA2011-3508.
    [106]
    YAO J K, LI W, XU L. Correction of Reynolds number effect for wind-tunnel model with flying wing[J]. Journal of Physics: Conference Series, 2021, 1985(1): 012007. doi: 10.1088/1742-6596/1985/1/012007
    [107]
    SCHREIBER H, STEINERT W, KÜSTERS B. Effects of Reynolds number and free-stream turbulence on boundary layer transition in a compressor cascade[J]. Journal of Turbomachinery, 2002, 124(1): 19. doi: 10.1115/1.1413471
    [108]
    DEGRAAFF D B, WEBSTER D R, EATON J K. The effect of Reynolds number on boundary layer turbulence[J]. Experimental Thermal and Fluid Science, 1998, 18(4): 341346. doi: 10.1016/s0894-1777(98)10042-0
    [109]
    SONG S, EATON J K. Reynolds number effects on a turbulent boundary layer with separation, reattachment, and recovery[J]. Experiments in Fluids, 2004, 36(2): 246258. doi: 10.1007/s00348-003-0696-8
    [110]
    MACWILKINSON D G, BLACKERBY W T, PATERSON J H. Correaltion of full-scale drag predictions with flight measurements on the C-141A aircraft. Phase 2: Wind tunnel test, analysis, and prediction techniques. Volume 1: Drag predictions, wind tunnel data analysis and correlation: LG73ER0058-VOL-2 [R]. Washington, DC: NASA, 1974.
    [111]
    KATZENBERG J, MACMANUS D. Computational study of a complex three-dimensional shock boundary-layer interaction[J]. Engineering Applications of Computational Fluid Mechanics, 2015, 9(1): 259279. doi: 10.1080/19942060.2015.1007564
    [112]
    JANA T, KAUSHIK M. Survey of control techniques to alleviate repercussions of shock-wave and boundary-layer interactions[J]. Advances in Aeronautics, 2022, 4(1): 27. doi: 10.1186/s42774-022-00119-9
    [113]
    TITCHENER N, BABINSKY H. A review of the use of vortex generators for mitigating shock-induced separation[J]. Shock Waves, 2015, 25(5): 473494. doi: 10.1007/s00193-015-0551-x
    [114]
    SABNIS K, BABINSKY H. A review of three-dimensional shock wave-boundary-layer interactions[J]. Progress in Aerospace Sciences, 2023, 143: 100953. doi: 10.1016/j.paerosci.2023.100953
    [115]
    张彦军, 赵轲, 张同鑫, 等. 雷诺数变化对翼型边界层发展及失速特性的影响[J]. 航空工程进展, 2019, 10(3): 319329. doi: 10.16615/j.cnki.1674-8190.2019.03004

    ZHANG Y J, ZHAO K, ZHANG T X, et al. The influence of Reynolds number on boundary layer development and stall characteristics of airfoil[J]. Advances in Aeronautical Science and Engineering, 2019, 10(3): 319329(in Chinese). doi: 10.16615/j.cnki.1674-8190.2019.03004
    [116]
    BURGGRAF O R, RIZZETTA D, WERLE M J, et al. Effect of Reynolds number on laminar separation of a supersonic stream[J]. AIAA Journal, 1979, 17(4): 336343. doi: 10.2514/3.61131
    [117]
    SPARROW E M, ABRAHAM J P, MINKOWYCZ W J. Flow separation in a diverging conical duct: effect of Reynolds number and divergence angle[J]. International Journal of Heat and Mass Transfer, 2009, 52(13-14): 30793083. doi: 10.1016/j.ijheatmasstransfer.2009.02.010
    [118]
    HANCOCK P E. Reynolds-number effects in separated flows[M]. Dordrecht: Springer Netherlands, 1995: 184−189.
    [119]
    WANG F F, WU S Q, ZHU S L. Numerical simulation of flow separation over a backward-facing step with high Reynolds number[J]. Water Science and Engineering, 2019, 12(2): 145154. doi: 10.1016/j.wse.2019.05.003
    [120]
    陈伟, 冷文军, 何鹏, 等. 滑移边界对高雷诺钝体绕流流动分离及阻力的影响[J]. 中国舰船研究, 2022, 17(5): 204211. doi: 10.19693/j.issn.1673-3185.02935

    CHEN W, LENG W J, HE P, et al. Influence of slip boundary on flow separation and drag of flow past bluff body at high Reynolds numbers[J]. Chinese Journal of Ship Research, 2022, 17(5): 204211(in Chinese). doi: 10.19693/j.issn.1673-3185.02935
    [121]
    刘强, 刘强, 白鹏, 等. 不同雷诺数下翼型气动特性及层流分离现象演化[J]. 航空学报, 2017, 38(4): 2234. doi: 10.7527/S1000-6893.2016.0257

    LIU Q, LIU Q, BAI P, et al. Aerodynamic characteristics of airfoil and evolution of laminar separation at different Reynolds numbers[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 2234(in Chinese). doi: 10.7527/S1000-6893.2016.0257
    [122]
    ANGELE K P, MUHAMMAD-KLINGMANN B. PIV measurements in a weakly separating and reattaching turbulent boundary layer[J]. European Journal of Mechanics - B, 2006, 25(2): 204222. doi: 10.1016/j.euromechflu.2005.05.003
    [123]
    DENG X Y, BO N, CHEN Y, et al. The study of Reynolds number effect on the behaviors of asymmetric vortices flow[C]// New Trends in Fluid Mechanics Research. Berlin, Heidelberg: Springer, 2007: 178-181.
    [124]
    SEAN M, GIOVANNI D C, JOHN C, et al. Understanding turbulent free-surface vortex flows using a Taylor-Couette flow analogy[J]. Scientific Reports, 2018, 8(1): 824. doi: 10.1038/s41598-017-16950-w
    [125]
    ESCAURIAZA C, SOTIROPOULOS F. Reynolds number effects on the coherent dynamics of the turbulent horseshoe vortex system[J]. Flow, Turbulence and Combustion, 2011, 86(2): 231262. doi: 10.1007/s10494-010-9315-y
    [126]
    BANDYOPADHYAY P R, BALASUBRAMANIAN R. Vortex Reynolds number in turbulent boundary layers[J]. Theoretical and Computational Fluid Dynamics, 1995, 7(2): 101117. doi: 10.1007/BF00311808
    [127]
    柏楠, 邓学蓥, 马宝峰, 等. 前体非对称涡流动临界雷诺数效应及分区特性[J]. 空气动力学学报, 2009, 27(5): 529535.

    BAI N, DENG X Y, MA B F, et al. The effect of critical Reynolds number and zonal characteristics on asymmetric vortices at forebody[J]. Acta Aerodynamica Sinica, 2009, 27(5): 529535(in Chinese).
    [128]
    HUMPHREYS M D. Pressure pulsations on rigid airfoils at transonic speeds[R]. NACA, 1951.
    [129]
    FUKUSHIMA Y, KAWAI S. Wall-modeled large-eddy simulation of transonic airfoil buffet at high Reynolds number[J]. AIAA Journal, 2018, 56(6): 23722388. doi: 10.2514/1.j056537
    [130]
    MOISE P, ZAUNER M, SANDHAM N D. Large-eddy simulations and modal reconstruction of laminar transonic buffet[J]. Journal of Fluid Mechanics, 2022, 944: A16. doi: 10.1017/jfm.2022.471
    [131]
    MASINI L, TIMME S, PEACE A J. Analysis of a civil aircraft wing transonic shock buffet experiment[J]. Journal of Fluid Mechanics, 2020, 884: A1. doi: 10.1017/jfm.2019.906
    [132]
    DANDOIS J. Experimental study of transonic buffet phenomenon on a 3D swept wing[J]. Physics of Fluids, 2016, 28(1): 016101. doi: 10.1063/1.4937426
    [133]
    王玉玲, 高超, 王娜. 雷诺数效应对翼型抖振特性的影响[J]. 实验力学, 2016, 31(3): 386392. doi: 10.7520/1001-4888-16-007

    WANG Y L, GAO C, WANG N. On the influence of Reynolds number on airfoil buffet characteristics[J]. Journal of Experimental Mechanics, 2016, 31(3): 386392(in Chinese). doi: 10.7520/1001-4888-16-007
    [134]
    NAGIB H M, CHAUHAN K A, MONKEWITZ P A. Approach to an asymptotic state for zero pressure gradient turbulent boundary layers[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365(1852): 755770. doi: 10.1098/rsta.2006.1948
    [135]
    NAGIB H M, CHAUHAN K A. Variations of von Kármán coefficient in canonical flows[J]. Physics of Fluids, 2008, 20(10): 101518101518-10. doi: 10.1063/1.3006423
    [136]
    SMITS A J, MCKEON B J, MARUSIC I. High–reynolds number wall turbulence[J]. Annual Review of Fluid Mechanics, 2011, 43: 353375. doi: 10.1146/annurev-fluid-122109-160753
    [137]
    郑晓静, 王国华. 高雷诺数壁湍流的研究进展及挑战[J]. 力学进展, 2020, 50(1): 149. doi: 10.6052/1000-0992-19-009

    ZHENG X J, WANG G H. Progresses and challenges of high Reynolds number wall-bounded turbulence[J]. Advances in Mechanics, 2020, 50(1): 149(in Chinese). doi: 10.6052/1000-0992-19-009
    [138]
    LI L, WU J S, LIANG Y H, et al. Numerical investigations of outer-layer turbulent boundary layer control for drag reduction through micro fluidic-jet actuators[J]. Aerospace Research Communications, 2024, 2: 12506. doi: 10.3389/arc.2024.12506
    [139]
    许春晓. 壁湍流相干结构和减阻控制机理[J]. 力学进展, 2015, 45(1): 111140. doi: 10.6052/1000-0992-15-006

    XU C X. Coherent structures and drag-reduction mechanism in wall turbulence[J]. Advances in Mechanics, 2015, 45(1): 111140(in Chinese). doi: 10.6052/1000-0992-15-006
    [140]
    唐志共, 袁先旭, 钱炜祺, 等. 高速空气动力学三大手段数据融合研究进展[J]. 空气动力学学报, 2023, 41(8): 4458. doi: 10.7638/kqdlxxb-2023.0096

    TANG Z G, YUAN X X, QIAN W Q, et al. Research progress on the fusion of data obtained by high-speed wind tunnels, CFD and model flight[J]. Acta Aerodynamica Sinica, 2023, 41(8): 4458(in Chinese). doi: 10.7638/kqdlxxb-2023.0096
    [141]
    CAHILL J F, CONNOR P. Correlation of data related to shock-induced trailing-edge separation and extrapolation to flight Reynolds number: NASA-CR-3178 [R]. NASA, 1979
    [142]
    KHAN M, CAHILl J. New Consideration on scale extrapolation of wing pressure distribution affected by transonic shock-induced separation: NASA-CR-166426 [R]. NASA, 1985.
    [143]
    程克明, 张其威, 黄奕裔, 等. 跨音速风洞试验的Re数修正[J]. 航空学报, 1994, 15(11).

    CHENG K M, ZHANG Q W, HUANG Y Y, et al. Correction for Reynolds number in transonic wind-tunnel testing[J]. Acta Aeronatutica et AstronauticaSinica, 1994, 15(11) (in Chinese).
    [144]
    张彦军, 段卓毅, 魏剑龙, 等. 基于风洞试验和数值模拟的超临界机翼雷诺数修正方法研究[J]. 空气动力学学报, 2018, 36(6): 934940. doi: 10.7638/kqdlxxb-2017.0213

    ZHANG Y J, DUAN Z Y, WEI J L, et al. Research of Reynolds number correction for supercritical wing based on wind tunnel tests and numerical simulations[J]. Acta Aerodynamica Sinica, 2018, 36(6): 934940(in Chinese). doi: 10.7638/kqdlxxb-2017.0213
    [145]
    PETTERSSON K, RIZZI A. Aerodynamic scaling to free flight conditions: past and present[J]. Progress in Aerospace Sciences, 2008, 44(4): 295313. doi: 10.1016/j.paerosci.2008.03.002
    [146]
    MAO K, XUE F, BAI F, et al. An engineering correction method of static aeroelasticity and Reynolds number effect on wind tunnel pressure distribution[C]//Asia-Pacific International Symposium on Aerospace Technology. Singapore: Springer, 2019: 114-134.
    [147]
    YANG H, CHEN S S, GAO Z H, et al. Reynolds number effect correction of multi-fidelity aerodynamic distributions from wind tunnel and simulation data[J]. Physics of Fluids, 2023, 35(10): 103113. doi: 10.1063/5.0170578

Catalog

    Article views (969) PDF downloads (79) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return