ZHAO L, LIU P, CUI W. Intelligent prediction model for reduced-order dynamic modes of velocity field around a 1∶5 rectangular section[J]. Acta Aerodynamica Sinica, 2025, 43(5): 124−133. DOI: 10.7638/kqdlxxb-2025.0031
Citation: ZHAO L, LIU P, CUI W. Intelligent prediction model for reduced-order dynamic modes of velocity field around a 1∶5 rectangular section[J]. Acta Aerodynamica Sinica, 2025, 43(5): 124−133. DOI: 10.7638/kqdlxxb-2025.0031

Intelligent prediction model for reduced-order dynamic modes of velocity field around a 1∶5 rectangular section

More Information
  • Received Date: February 20, 2025
  • Revised Date: May 24, 2025
  • Accepted Date: May 24, 2025
  • Available Online: June 03, 2025
  • Published Date: June 04, 2025
  • Although the research on flow around bluff body sections can obtain the characteristics of the velocity field through particle image velocimetry (PIV) and computational fluid dynamics (CFD) methods, it is limited by the Reynolds number effect, onsite test conditions, and the accuracy of numerical simulation. However, the full-scale bridge surface pressure measurement technology is more engineering practical. Building upon the inherent coupling between the surface pressure field and velocity field of bridge sections, this paper proposes a reduced-order correlation and prediction model for the velocity field of a 1:5 rectangular section using surface pressure distribution. The developed model‌ integrates dynamic mode decomposition (DMD) and a BP neural network to: (1) extract pressure and velocity field modes across Reynolds numbers (100020000); (2) establish their mapping relationship through an implicit neural network; and (3) achieve velocity field prediction from pressure data. ‌Validation results‌ at Re=6000 show prediction errors of merely 0.06 m/s (lateral) and 0.02 m/s (vertical) at the reference point [1.5, 0], demonstrating the model's effectiveness. This research provides valuable insights for wake flow field reconstruction and aerodynamic measure evaluation in bridge sections.

  • [1]
    KUTA J N, BRUNTON S L, BRUNTON B W, et al. Dynamic mode decomposition: Data-driven modeling of complex systems [M]. PhiladelphiaPAUnited States: SIAM-Society for Industrial and Applied Mathematics, 2016.
    [2]
    张伟峰, 张志田, 张显雄. 桥梁断面气动导纳风场依赖特性的数值研究[J]. 空气动力学学报, 2018, 36(4): 677−686,694. doi: 10.7638/kqdlxxb-2016.0067

    ZHANG W F, ZHANG Z T, ZHANG X X. Numerical investigation on the wind-field-dependence property of bridge section aerodynamic admittances[J]. Acta Aerodynamica Sinica, 2018, 36(4): 677−686,694(in Chinese). doi: 10.7638/kqdlxxb-2016.0067
    [3]
    刘祖军, 杨詠昕. H形桥梁断面颤振的流场驱动机理及气流能量分析[J]. 土木工程学报, 2013, 46(4): 110−116,141.

    LIU Z J, YANG Y X. Flow field mechanism and air energy characteristic of H-shape section in flutter[J]. China Civil Engineering Journal, 2013, 46(4): 110−116,141(in Chinese).
    [4]
    FRANDSEN J B. Simultaneous pressures and accelerations measured full-scale on the Great Belt East suspension bridge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(1): 95−129. doi: 10.1016/S0167-6105(00)00059-3
    [5]
    LI H, LAIMA S J, OU J P, et al. Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements[J]. Engineering Structures, 2011, 33(6): 1894−1907. doi: 10.1016/j.engstruct.2011.02.017
    [6]
    JIN X W, CHENG P, CHEN W L, et al. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder[J]. Physics of Fluids, 2018, 30(4): 047105. doi: 10.1063/1.5024595
    [7]
    HU C X, ZHAO L, GE Y J. A simplified vortex model for the mechanism of vortex-induced vibrations in a streamlined closed-box girder[J]. Wind and Structures, 2021, 32(4): 309−19. doi: 10.12989/was.2021.32.4.309
    [8]
    HU C X, ZHAO L, GE Y J. Multiple-order vertical vortex-induced vibration mechanism of a typical streamlined closed-box girder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 227: 105066. doi: 10.1016/j.jweia.2022.105066
    [9]
    寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报, 2018, 36(2): 163−179. doi: 10.7638/kqdlxxb-2017.0134

    KOU J Q, ZHANG W W. Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36(2): 163−179 (in Chinese). doi: 10.7638/kqdlxxb-2017.0134
    [10]
    杜孟华, 田琳琳, 朱春玲. 带冰翼型失速分离流动数值模拟和模态分析[J]. 空气动力学学报, 2023, 41(11): 46−55. doi: 10.7638/kqdlxxb-2022.0140

    DU M H, TIAN L L, ZHU C L. IDDES simulations of flow separation around the iced airfoil and its modal analysis[J]. Acta Aerodynamica Sinica, 2023, 41(11): 46−55(in Chinese). doi: 10.7638/kqdlxxb-2022.0140
    [11]
    SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5−28. doi: 10.1017/s0022112010001217
    [12]
    寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37(9): 2679−2689. doi: 10.7527/S1000-6893.2016.0003

    KOU J Q, ZHANG W W, GAO C Q. Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2679−2689(in Chinese). doi: 10.7527/S1000-6893.2016.0003
    [13]
    HU C X, ZHAO L, GUAN X L, et al. Mitigation mechanism of torsional vortex-induced vibrations using aerodynamic countermeasures: Case study on a typical closed-box girder[J]. Engineering Structures, 2024, 318: 118611. doi: 10.1016/j.engstruct.2024.118611
    [14]
    SCHEWE G. Reynolds-number-effects in flow around a rectangular cylinder with aspect ratio 1: 5[J]. Journal of Fluids and Structures, 2013, 39: 15−26. doi: 10.1016/j.jfluidstructs.2013.02.013
    [15]
    NAKAMURA Y, OHYA Y, OZONO S, et al. Experimental and numerical analysis of vortex shedding from elongated rectangular cylinders at low Reynolds numbers 200−103[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 65(1-3): 301−308. doi: 10.1016/S0167-6105(97)00048-2
    [16]
    BERRONE S, GARBERO V, MARRO M. Numerical simulation of low-Reynolds number flows past rectangular cylinders based on adaptive finite element and finite volume methods[J]. Computers & Fluids, 2011, 40(1): 92−112. doi: 10.1016/j.compfluid.2010.08.014
    [17]
    HOURIGAN K, THOMPSON M C, TAN B T. Self-sustained oscillations in flows around long blunt plates[J]. Journal of Fluids and Structures, 2001, 15(3-4): 387−398. doi: 10.1006/jfls.2000.0352
    [18]
    WU B, LI S P, LI K, et al. Large-eddy simulation of the near wake of a 5∶1 rectangular cylinder in oscillating flows at Re = 670[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 196: 104050. doi: 10.1016/j.jweia.2019.104050
    [19]
    BRUNO L, SALVETTI M V, RICCIARDELLI F. Benchmark on the aerodynamics of a rectangular 5∶1 cylinder: An overview after the first four years of activity[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 126: 87−106. doi: 10.1016/j.jweia.2014.01.005

Catalog

    Article views (10) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return