LI K, WANG L L, CHEN Z S, et al. Intelligent prediction method of flow field and aerodynamic characteristics for two-dimensional blunt body combined sections in steady wind[J]. Acta Aerodynamica Sinica, 2025, 43(5): 112−123. DOI: 10.7638/kqdlxxb-2025.0036
Citation: LI K, WANG L L, CHEN Z S, et al. Intelligent prediction method of flow field and aerodynamic characteristics for two-dimensional blunt body combined sections in steady wind[J]. Acta Aerodynamica Sinica, 2025, 43(5): 112−123. DOI: 10.7638/kqdlxxb-2025.0036

Intelligent prediction method of flow field and aerodynamic characteristics for two-dimensional blunt body combined sections in steady wind

More Information
  • Received Date: February 25, 2025
  • Revised Date: April 15, 2025
  • Accepted Date: May 04, 2025
  • Available Online: May 21, 2025
  • Published Date: May 22, 2025
  • In the design and optimization of structural cross-sections, the efficient and accurate evaluation of aerodynamic performance is of significant importance. To address the inefficiency in iterative computations involving diverse design parameters‌, this study proposed an intelligent prediction method based on a deep learning surrogate model, focusing on the rapid and accurate prediction of flow fields around two-dimensional combined bluff body cross-sections and static force coefficients under steady wind conditions. Specifically, this method employed a unified image-like shape representation to characterize the aerodynamic shapes of bluff body combined cross-sections, ensuring broad applicability without being limited by specific cross-section configurations. By integrating convolutional attention mechanisms and residual modules to construct the neural network architecture and using mean squared error to capture prediction errors, the method achieved a highly nonlinear mapping from aerodynamic shapes to flow characteristics and static force coefficients. The model achieves prediction errors within ‌3.7% for velocity fields‌, ‌0.35% for surface pressure‌, and ‌6.25% for force coefficients‌ under steady wind, meeting all accuracy requirements. Additionally, the computational efficiency was improved by four orders of magnitude compared to conventional CFD. This method provides an efficient and practical solution for the rapid prediction of aerodynamic performance for bluff body cross-sections under steady wind environments.

  • [1]
    谢壮宁, 顾明. 任意排列双柱体的风致干扰效应[J]. 土木工程学报, 2005, 38(10): 32−38. doi: 10.3321/j.issn:1000-131X.2005.10.006

    XIE Z N, GU M. Wind-induced interference effects of arbitrary arrangement of twin cylindrical bodies[J]. Journal of Civil Engineering, 2005, 38(10): 32−38 (in Chinese). doi: 10.3321/j.issn:1000-131X.2005.10.006
    [2]
    KIM Y C, JUN K D, TAMURA Y. Wind-induced coupled motion of tall buildings with varying square plan with height[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(5): 638−650. doi: 10.1016/j.jweia.2011.03.004
    [3]
    HE X H, LI H, WANG H F, et al. Effects of geometrical parameters on the aerodynamic characteristics of a streamlined flat box girder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 170: 56−67. doi: 10.1016/j.jweia.2017.08.009
    [4]
    胡传新, 周志勇, 孙强. 主梁断面形式对大跨斜拉桥风致稳定性的影响研究[J]. 桥梁建设, 2018, 48(6): 53−57. doi: 10.3969/j.issn.1003-4722.2018.06.010

    HU C X, ZHOU Z Y, SUN Q. Effects of bridge decks on stability of long-span cable-stayed bridge[J]. Bridge Construction, 2018, 48(6): 53−57 (in Chinese). doi: 10.3969/j.issn.1003-4722.2018.06.010
    [5]
    吴倩云, 孙亚松, 刘小兵. 并列双方柱气动特性的干扰效应研究[J]. 工程力学, 2020, 37(S1): 265−269. doi: 10.6052/j.issn.1000-4750.2019.04.S007

    WU Q Y, SUN Y S, LIU X B. Study on interference effect of aerodynamic characteristics of two parallel columns[J]. Engineering Mechanics, 2020, 37(S1): 265−269 (in Chinese). doi: 10.6052/j.issn.1000-4750.2019.04.S007
    [6]
    杨晶, 许福友, 曾冬雷. 宽高比为 10 的矩形断面气动特性试验研究[J]. 振动与冲击, 2020, 39: 109–115, 129.

    YANG J, XU F Y, ZENG D L. Experimental study on the aerodynamic characteristics of a rectangular cross-section with a width-to-height ratio of 10[J]. Vibration and Shock, 2020, 39: 109–115, 129 (in Chinese).
    [7]
    MADSEN J I, SHYY W, HAFTKA R T. Response surface techniques for diffuser shape optimization[J]. AIAA Journal, 2000, 38: 1512−1518. doi: 10.2514/3.14576
    [8]
    高宇琦, 王浩, 徐梓栋, 等. 大跨度高铁连续梁桥箱梁断面静力三分力系数的数值模拟[J]. 南京工业大学学报(自然科学版), 2020, 42(3): 358−365.

    GAO Y Q, WANG H, XU Z D, et al. Numerical simulation of static tri-component coefficients of girder sections of a long-span high-speed railway continuous beam bridge[J]. Journal of Nanjing Tech University (Natural Science Edition), 2020, 42(3): 358−365 (in Chinese).
    [9]
    左云. 不同梁宽的10∶1宽高比边主梁叠合梁气动特性研究[J]. 四川建筑, 2024, 44(2): 182−185. doi: 10.3969/j.issn.1007-8983.2024.02.062

    ZUO Y. Study on aerodynamic characteristics of composite beams with 10∶1 aspect-to-height ratio of side girders with different Liang Kuan[J]. Sichuan Architecture, 2024, 44(2): 182−185 (in Chinese). doi: 10.3969/j.issn.1007-8983.2024.02.062
    [10]
    CELIK I, KLEIN M, FREITAG M, et al. Assessment measures for URANS/DES/LES: An overview with applications[J]. Journal of Turbulence, 2006, 7: 48. doi: 10.1080/14685240600794379
    [11]
    陈晓春, 王元. 绕钝体分离流动的非定常数值模拟研究[J]. 空气动力学学报, 2007, 25(4): 513−520. doi: 10.3969/j.issn.0258-1825.2007.04.019

    CHEN X C, WANG Y. The unsteady numerical simulation of separated flow around bluff bodies[J]. Acta Aerodynamica Sinica, 2007, 25(4): 513−520 (in Chinese). doi: 10.3969/j.issn.0258-1825.2007.04.019
    [12]
    陈海, 钱炜祺, 何磊. 基于深度学习的翼型气动系数预测[J]. 空气动力学学报, 2018, 36(2): 294−299.

    CHEN H, QIAN W Q, HE L. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica, 2018, 36(2): 294−299 (in Chinese).
    [13]
    MIYANAWALA T P, JAIMAN R K. A novel deep learning method for the predictions of current forces on bluff bodies[C]// ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. Madrid, Spain, 2018. doi: 10.1115/OMAE2018-78338
    [14]
    GUO X X, LI W, IORIO F. Convolutional neural networks for steady flow approximation[C]// 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA. New York: ACM, 2016: 481–490. doi: 10.1145/2939672.2939738
    [15]
    ABBAS T, KAVRAKOV I, MORGENTHAL G, et al. Prediction of aeroelastic response of bridge decks using artificial neural networks[J]. Computers & Structures, 2020, 231: 106198. doi: 10.1016/j.compstruc.2020.106198
    [16]
    LI K, LI H, LI S P, et al. Fully convolutional neural network prediction method for aerostatic performance of bluff bodies based on consistent shape description[J]. Applied Sciences, 2022, 12(6): 3147. doi: 10.3390/app12063147
    [17]
    RIBEIRO M D, REHMAN A, AHMED S, et al. DeepCFD: Efficient steady-state laminar flow approximation with deep convolutional neural networks[EB/OL]. (2021-11-26)[2025-02-25]. https://arxiv.org/abs/2004.08826v3.
    [18]
    LIN P F, YOU C Y, WANG Q L, et al. Deep learning-based fast prediction of flow field around multiple bluff bodies[J]. Advances in Wind Engineering, 2024, 1(2): 100020. doi: 10.1016/j.awe.2024.100020
    [19]
    BERNARDINI E, SPENCE S M J, WEI D, et al. Aerodynamic shape optimization of civil structures: A CFD-enabled Kriging-based approach[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 144: 154−164. doi: 10.1016/j.jweia.2015.03.011
    [20]
    TOMPSON J, SCHLACHTER K, SPRECHMANN P, et al. Accelerating eulerian fluid simulation with convolutional networks[EB/OL]. (2017-08-06)[2025-02-25]. https://arxiv.org/abs/1607.03597v7.
    [21]
    CHEN D L, GAO X, XU C F, et al. FlowGAN: A conditional generative adversarial network for flow prediction in various conditions[C]// Proc of the 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), Baltimore, MD, USA. IEEE, 2020: 315-322. doi: 10.1109/ictai50040.2020.00057
    [22]
    WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. doi: 10.1007/978-3-030-01234-2_1
    [23]
    ALVAREZ A J, NIETO F, KWOK K C S, et al. Aerodynamic performance of twin-box decks: A parametric study on gap width effects based on validated 2D URANS simulations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182: 202−221. doi: 10.1016/j.jweia.2018.09.004
  • Related Articles

    [1]DENG Xiaolong, HU Gang, CHEN Wenli. Deep reinforcement learning based intelligent flow control of vortex-induced vibration for box girder[J]. ACTA AERODYNAMICA SINICA, 2025, 43(5): 92-100. DOI: 10.7638/kqdlxxb-2025.0016
    [2]ZHANG Chunwei, KE Shitang, WANG Boyang, YU Wei, LIANG Ke, MA Wenyong. Reconstruction of flow fields around large-span flexible PV array based on physics-informed deep learning[J]. ACTA AERODYNAMICA SINICA, 2025, 43(4): 91-102. DOI: 10.7638/kqdlxxb-2024.0191
    [3]SU Jing, SUN Gang, TAO Jun. An inverse design method for three-dimensional morphing wings based on deep reinforcement learning[J]. ACTA AERODYNAMICA SINICA, 2024, 42(10): 84-97. DOI: 10.7638/kqdlxxb-2024.0123
    [4]FAN Jiakun, YAO Fangzhou, HUANG Jiangtao, XU Jiakuan, QIAO Lei, BAI Junqiang. Application of deep learning in boundary layer flow instability analysis[J]. ACTA AERODYNAMICA SINICA, 2024, 42(3): 30-46. DOI: 10.7638/kqdlxxb-2023.0073
    [5]LIANG Rengkang, ZHANG Wei, YANG Sifan, HUANG Gang, LI Lang. Applications of deep learning-based super-resolution for reconstruction of flow around the CAARC benchmark model[J]. ACTA AERODYNAMICA SINICA, 2023, 41(11): 116-126. DOI: 10.7638/kqdlxxb-2022.0157
    [6]CHEN Bingyan, LIU Chuanzhen, BAI Peng, QIAO Yu. Aerodynamic prediction for waveriders using deep residual learning[J]. ACTA AERODYNAMICA SINICA, 2019, 37(3): 505-509. DOI: 10.7638/kqdlxxb-2019.0027
    [7]HE Lei, QIAN Weiqi, WANG Qing, CHEN Hai, YANG Jun. Applications of machine learning for aerodynamic characteristics modeling[J]. ACTA AERODYNAMICA SINICA, 2019, 37(3): 470-479. DOI: 10.7638/kqdlxxb-2019.0033
    [8]HUI Xinyu, YUAN Zelong, BAI Junqiang, ZHANG Yang, CHEN Gang. A method of unsteady periodic flow field prediction based on the deep learning[J]. ACTA AERODYNAMICA SINICA, 2019, 37(3): 462-469. DOI: 10.7638/kqdlxxb-2019.0003
    [9]CAI Shengze, XU Chao, GAO Qi, WEI Runjie. Particle image velocimetry based on a deep neural network[J]. ACTA AERODYNAMICA SINICA, 2019, 37(3): 455-461. DOI: 10.7638/kqdlxxb-2019.0042
    [10]CHEN Hai, QIAN Weiqi, HE Lei. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. ACTA AERODYNAMICA SINICA, 2018, 36(2): 294-299. DOI: 10.7638/kqdlxxb-2017.0098

Catalog

    Article views (11) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return