LIU Ji-min, HOU Zhi-qiang, SONG Gui-bao, LV Zhi-biao. Conceptual design and optimization for forebody/inlet of hypersonic cruise missiles[J]. ACTA AERODYNAMICA SINICA, 2013, 31(3): 321-325.
Citation: LIU Ji-min, HOU Zhi-qiang, SONG Gui-bao, LV Zhi-biao. Conceptual design and optimization for forebody/inlet of hypersonic cruise missiles[J]. ACTA AERODYNAMICA SINICA, 2013, 31(3): 321-325.

Conceptual design and optimization for forebody/inlet of hypersonic cruise missiles

More Information
  • Received Date: January 14, 2012
  • Revised Date: June 20, 2011
  • Available Online: January 07, 2021
  • Based on the integrated design demand of hypersonic cruise missiles, a forebody/inlet benchmark configuration was designed by the constant shock intensity method. Performances of the benchmark configuration were analyzed by means of numerical simulation. The performance response surface model was established using the Design of Experiments (DOE) and CFD results. The forebody/inlet was optimized by multi-objective particle swarm optimization (MOPSO) algorithm under the performance indices of total pressure recovery coefficient and mass capture coefficient. Performances of the optimized forebody/inlet were analyzed using CFD methods. The results show that the forebody/inlet design method is right and effective, and the benchmark configuration meets the design requirements. The forebody/inlet performances can be improved by the multi-objective optimization method. The research results provide a reference for integrated design of scramjets to be used in hypersonic cruise missiles.
  • [1]
    CURRAN E T, MURTHY S N B. Scramjet propulsion[A]. Progress in astronautics and aeronautics[C]. AIAA, 2001.
    [2]
    张晓嘉, 梁德旺, 李博, 等. 典型二元高超声速进气道设计方法研究[J]. 航空动力学报, 2007, 22(8): 1290-1296.
    [3]
    徐大军, 孙冰, 徐旭, 等. 超燃冲压发动机一体化设计与优化方法研究[J]. 推进技术, 2002, 23(5): 360-362.
    [4]
    黎明, 宋文艳, 贺伟. 高超声速二维混压式前体/进气道设计方法研究[J]. 航空动力学报, 2004, 19(4): 459-465.
    [5]
    HENDERSON L K. Maximum total pressure recovery across a system of n shock waves[J]. AIAA Journal, 1964, 2(6): 1138-1140.
    [6]
    AKIHISA D, MASUYA G, KANDA T, et al. Effects of airframe integrated configuration on scramjet inlet performance[R]. AIAA 2000-0619.
    [7]
    刘济民, 侯志强, 宋贵宝, 等. 高超声速巡航导弹乘波构型优化设计与性能分析[J]. 空气动力学学报, 2011, 29(1): 118-122.
    [8]
    HEISER W H, PRATT D T. Hypersonic airbreathing propulsion[M]. AIAA Education Series[C]. Washington D C, 1994.
    [9]
    刘凯礼, 李博, 雷雨冰, 等. 宽高比对二元高超声速进气道性能的影响研究[J]. 推进技术, 2009, 30(4): 446-450.
    [10]
    徐旭, 蔡国飙. 超燃冲压发动机二维进气道优化设计方法研究[J]. 推进技术, 2001, 22(6): 468-472.
    [11]
    李建平, 宋文艳, 郑亚明, 等. 超燃冲压发动机一体化设计及数值模拟[J]. 航空动力学报, 2009, 24(4): 911-917.
    [12]
    STARKEY R P. Investigation of airbreathing, hypersonic missile configurations within external box constraints[D]. Maryland: University of Maryland, 2000.
    [13]
    HAGENMAIER M A, DAVIS D L. Scramjet component optimization using CFD and design of experiments[R]. AIAA 2002-0544.
    [14]
    HELLMAN B M, HARTONG A R. Conceptual level offdesign scramjet performance modeling[R]. AIAA 2007-5031.
    [15]
    STARKEY R P. Scramjet optimization for maximum offdesign performance[R]. AIAA 2004-3343.
    [16]
    CHEN B, XU X, CAI G B. Singleand multiobjective optimization of scramjet components using genetic algorithms based on a parabolized navierstokes solver[R]. AIAA 2006-4686.
    [17]
    王允良, 李为吉. 基于混合多目标粒子群算法的飞行器气动布局设计[J]. 航空学报, 2008, 29(5): 1202-1206.
  • Related Articles

    [1]FAN Yuxiang, YU Yang, XI Ke, ZHAO Rui, REN Fang. Numerical simulation and optimization design of fluctuation pressure environment of a rocket fairing[J]. ACTA AERODYNAMICA SINICA, 2022, 40(6): 29-37. DOI: 10.7638/kqdlxxb-2021.0314
    [2]BAI Jinwei, ZONG Wengang, LI Xiangyuan. Numerical simulation of the process about water pouring into burning oil[J]. ACTA AERODYNAMICA SINICA, 2019, 37(5): 864-870. DOI: 10.7638/kqdlxxb-2018.0068
    [3]TAN Jie, SUN Xiaofeng, LIU Fuqun, YANG Hongjun, CHEN Zheng. Numerical simulation of aerodynamic heating environment of a hypersonic plate/rudder configuration[J]. ACTA AERODYNAMICA SINICA, 2019, 37(1): 153-159. DOI: 10.7638/kqdlxxb-2018.0234
    [4]HOU Zhiquan, YANG Mingzhi, LIANG Xifeng, WEN Dianzhong. Numerical analysis and design optimization of diagonal flow fan for locomotives[J]. ACTA AERODYNAMICA SINICA, 2018, 36(2): 300-306. DOI: 10.7638/kqdlxxb-2015.0208
    [5]Zhang Jian, Tang Zhigong, Deng Youqi, Zhou Naichun. Three-dimensional numerical simulations for transonic axial compressors using a mixing plane method[J]. ACTA AERODYNAMICA SINICA, 2015, 33(5): 631-635. DOI: 10.7638/kqdlxxb-2014.0019
    [6]Liu Xu, Liu Wei, Zhou Yunlong, Chai Zhenxia. Numerical simulation of dynamic derivatives for air-breathing hypersonic vehicle[J]. ACTA AERODYNAMICA SINICA, 2015, 33(2): 147-155. DOI: 10.7638/kqdlxxb-2015.0020
    [7]Zhang Yifeng, Lei Jing, Zhang Yirong, Mao Meiliang, Chen Jianqiang. Calibration of transition model for hypersonic numerical simulation platform[J]. ACTA AERODYNAMICA SINICA, 2015, 33(1): 42-47. DOI: 10.7638/kqdlxxb-2014.0110
    [8]ZHOUPeipei. Numerical simulation of a grid fin missile based on structure grid[J]. ACTA AERODYNAMICA SINICA, 2014, 32(3): 334-338. DOI: 10.7638/kqdlxxb-2012.0100
    [9]XU Jia, CAI Jinsheng, LIU Qiuhong. Numerical investigation of jet interactions and optimization design of drag reduction for the afterbody of jet aircraft[J]. ACTA AERODYNAMICA SINICA, 2014, 32(1): 38-44. DOI: 10.7638/kqdlxxb-2012.0061
    [10]白俊强, 李鑫, 华俊, 王昆. 过冷大水滴情况下的积冰数值模拟[J]. ACTA AERODYNAMICA SINICA, 2013, 31(6): 801-811.

Catalog

    Article views (1004) PDF downloads (971) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return