LIU Yan, BAI Jun-qiang, ZHU Jun. Study of the adaptive optimal design method based on design variables space[J]. ACTA AERODYNAMICA SINICA, 2013, 31(3): 362-370.
Citation: LIU Yan, BAI Jun-qiang, ZHU Jun. Study of the adaptive optimal design method based on design variables space[J]. ACTA AERODYNAMICA SINICA, 2013, 31(3): 362-370.

Study of the adaptive optimal design method based on design variables space

More Information
  • Received Date: April 30, 2012
  • Revised Date: August 29, 2012
  • Available Online: January 07, 2021
  • Based on a study of optimization design method and distribution of design variables space, an adaptive optimal design method of the design variable space is established, and the problem about design variable spatial extent choice is solved. In this method, the conception of aggregation is built, which is used to describe the statistical distribution rule of the design variables spaces. This rule is used to adjust the design variables spaces automatically and to reconstruct the design variable during the optimization. The design variable space extent is adapted during the optimization by this method. Optimal solutions for requirements are got in a larger spatial scale, at the same time the efficiency is improved by reconstruction of design variables. In this paper, the optimal design problems of NACA0012 and NLF(1)0416 airfoils are solved by the adaptive optimal design method of the design variable space, the optimal design results demonstrate the optimal design method is feasible. At the same time, in comparison with the stable optimal design method of the design variable space, the results demonstrate that this optimization method can search the optimal solutions in a larger spatial scale and in a higher ability.
  • [1]
    杨希祥, 李晓斌, 肖飞. 智能优化算法及其在飞行器优化设计领域的应用综述[J]. 宇航学报, 2009, 30(6): 2051-2061.
    [2]
    KIM H J, RHO O H. Aerodynamic design of transonic wing using the target pressure optimization approach[R]. AIAA 1998-0599.
    [3]
    王基维, 熊伟, 李会玲, 等. 现代优化设计方法的现状和发展趋势[J]. 机械制造与研究, 2007, 36(6): 5-6.
    [4]
    高琳. 机械优化设计方法综述[J]. 科技创新导报, 2010, (30): 14.
    [5]
    黄冀卓, 王湛. 结合梯度法的混合微粒群优化算法[J]. 计算机工程与应用, 2008, 44(35): 41.
    [6]
    正金华, 吕卉, 伍军, 等. 基于空间交配遗传算法的收敛性分析[J]. 模式识别与人工智能, 2010, 10: 640-641.
    [7]
    许斗, 钱峰. 遗传算法的应用研究进展[J]. 芜湖职业技术学院学报, 2003, 5(1): 1-4.
    [8]
    刘敏, 陈宝兴, 郑金华. 快速提高NSGA-Ⅱ算法双目标优化效率的方法[J]. 计算机工程与应用, 2009, 45(34): 48-49.
    [9]
    巩固, 赵向军, 郝国生, 等. 优化搜索空间划分的遗传算法的研究与实现[J]. 河南大学学报, 2009, 39(6): 632-634.
    [10]
    陈国良, 王煦法, 庄镇泉, 等. 遗传算法及其应用[M]. 人民邮电出版社, 1999.
    [11]
    黄聪明, 陈湘秀. 小生境遗传算法的改进[J]. 北京理工大学学报, 2004, 24(8): 675-678.
    [12]
    隋洪涛. 基因遗传算法及气动外形最优化设计[D]. [博士学位论文]. 南京航空航天大学, 2002.
    [13]
    阮桂海, 蔡建琼, 朱志海. 统计分析应用教程[M]. 清华大学出版社, 2003.
    [14]
    YANG Q, HU B. Using matrix to fifure random vector’s correlative degree[J]. Journal of Wuhan University of Technology, 2002, 6: 26-30.
    [15]
    姬景周. 统计学原理[M]. 中国商业出版社, 1997.

Catalog

    Article views (746) PDF downloads (928) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return