Citation: | ZONG H H, SUN E B. Reivew of active wake control for horizontal-axis wind turbines[J]. Acta Aerodynamica Sinica, 2022, 40(4): 51−68. DOI: 10.7638/kqdlxxb-2021.0249 |
[1] |
IEA. Global Energy Review 2021. Internatioanl Energy Agency 2021. Internatioanl Energy Agency 2021[EB/OL]. https://www.iea.org/reports/global-energy-review-2021
|
[2] |
PORTÉ-AGEL F, BASTANKHAH M, SHAMSODDIN S. Wind-turbine and wind-farm flows: a review[J]. Boundary-Layer Meteorology, 2020, 174(1): 1-59. DOI: 10.1007/s10546-019-00473-0
|
[3] |
RITCHIE H, ROSER M. Energy[EB/OL]. Published online at OurWorldInData. org. , 2021. https://ourworldindata.org/energy
|
[4] |
JAGANMOHAN M. Installed wind power capacity worldwide 2001-2020[EB/OL]. Published online at www. statista. com, 2021. https://www.statista.com/statistics/268363/installed-wind-power-capacity-worldwide/
|
[5] |
黎作武, 贺德馨. 风能工程中流体力学问题的研究现状与进展[J]. 力学进展, 2013, 43(5): 472-525.
LI Z W, HE D X. Reviews of fluid dynamics researches in wind energy engineering[J]. Advances in Mechanics, 2013, 43(5): 472-525. (in Chinese)
|
[6] |
STEVENS R J A M, MENEVEAU C. Flow structure and turbulence in wind farms[J]. Annual Review of Fluid Mechanics, 2017, 49(1): 311-339. DOI: 10.1146/annurev-fluid-010816-060206
|
[7] |
BARTHELMIE R J, HANSEN K, FRANDSEN S T, et al. Modelling and measuring flow and wind turbine wakes in large wind farms offshore[J]. Wind Energy, 2009, 12(5): 431-444. DOI: 10.1002/we.348
|
[8] |
BARTHELMIE R J, PRYOR S C, FRANDSEN S T, et al. Quantifying the impact of wind turbine wakes on power output at offshore wind farms[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(8): 1302-1317. DOI: 10.1175/2010jtecha1398.1
|
[9] |
BARTHELMIE R J, JENSEN L E. Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm[J]. Wind Energy, 2010, 13(6): 573-586. DOI: 10.1002/we.408
|
[10] |
HASAGER C, RASMUSSEN L, PEÑA A, et al. Wind farm wake: the horns rev photo case[J]. Energies, 2013, 6(2): 696-716. DOI: 10.3390/en6020696
|
[11] |
MEDICI D. Experimental studies of wind turbine wakes: power optimisation and meandering[D]. KTH, 2005.
|
[12] |
ADARAMOLA M S, KROGSTAD P Å. Experimental investigation of wake effects on wind turbine performance[J]. Renewable Energy, 2011, 36(8): 2078-2086. DOI: 10.1016/j.renene.2011.01.024
|
[13] |
WAGENAAR J W, MACHIELSE L A H, SCHEPERS J G. Controlling wind in ECN’s scaled wind farm[C]// EWEA 2012. https://www.researchgate.net/publication/264851319_Controlling_Wind_in_ECN's_Scaled_Wind_Farm
|
[14] |
DAR Z, KAR K, SAHNI O, et al. Windfarm power optimization using yaw angle control[J]. IEEE Transactions on Sustainable Energy, 2017, 8(1): 104-116. DOI: 10.1109/TSTE.2016.2585883
|
[15] |
WANG J, BOTTASSO C L, CAMPAGNOLO F. Wake redirection: comparison of analytical, numerical and experimental models[C]//Journal of Physics: Conference Series. IOP Publishing, 2016, 753(3): 032064. https://re.public.polimi.it/retrieve/handle/11311/1007400/163974/WANGJ01-16.pdf doi: 10.1088/1742-6596/753/3/032064
|
[16] |
CAMPAGNOLO F, PETROVIĆ V, BOTTASSO C L, et al. Wind tunnel testing of wake control strategies[C]//2016 American Control Conference (ACC), Boston, MA, USA. IEEE, 2016: 513-518. doi: 10.1109/ACC.2016.7524965
|
[17] |
HOWLAND M F, LELE S K, DABIRI J O. Wind farm power optimization through wake steering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29): 14495-14500. https://www.pnas.org/content/pnas/116/29/14495.full.pdf doi: 10.1073/pnas.1903680116
|
[18] |
BASTANKHAH M, PORTÉ-AGEL F. Wind farm power optimization via yaw angle control: a wind tunnel study[J]. Journal of Renewable and Sustainable Energy, 2019, 11(2): 023301. DOI: 10.1063/1.5077038
|
[19] |
ZONG H H, PORTÉ-AGEL F. Experimental investigation and analytical modelling of active yaw control for wind farm power optimization[J]. Renewable Energy, 2021, 170: 1228-1244. DOI: 10.1016/j.renene.2021.02.059
|
[20] |
NASH R, NOURI R, VASEL-BE-HAGH A. Wind turbine wake control strategies: a review and concept proposal[J]. Energy Conversion and Management, 2021, 245: 114581. DOI: 10.1016/j.enconman.2021.114581
|
[21] |
NANOS E M, BOTTASSO C L, MANOLAS D I, et al. Vertical wake deflection for floating wind turbines by differential ballast control[J]. Wind Energy Science Discussions, 2021(Accepted). https://www.researchgate.net/publication/354010920_Vertical_wake_deflection_for_floating_wind_turbines_by_differential_ballast_control doi: 10.5194/wes-2021-79
|
[22] |
NANOS E M, LETIZIA S, CLEMENTE D J B, et al. Vertical wake deflection for offshore floating wind turbines by differential ballast control[J]. Journal of Physics: Conference Series, 2020, 1618: 022047. DOI: 10.1088/1742-6596/1618/2/022047
|
[23] |
KIMURA K, TANABE Y, MATSUO Y, et al. Forced wake meandering for rapid recovery of velocity deficits in a wind turbine wake[C]//AIAA Scitech 2019 Forum, San Diego, California. Reston, Virginia: AIAA, 2019: 2083. doi: 10.2514/6.2019-2083
|
[24] |
WANG J, FOLEY S, NANOS E M, et al. Numerical and experimental study of wake redirection techniques in a boundary layer wind tunnel[J]. Journal of Physics: Conference Series, 2017, 854: 012048. DOI: 10.1088/1742-6596/854/1/012048
|
[25] |
FLEMING P A, GEBRAAD P M O, LEE S, et al. Evaluating techniques for redirecting turbine wakes using SOWFA[J]. Renewable Energy, 2014, 70: 211-218. DOI: 10.1016/j.renene.2014.02.015
|
[26] |
FLEMING P, GEBRAAD P M O, LEE S, et al. Simulation comparison of wake mitigation control strategies for a two-turbine case[J]. Wind Energy, 2015, 18(12): 2135-2143. DOI: 10.1002/we.1810
|
[27] |
FLEMING P, ANNONI J, SHAH J J, et al. Field test of wake steering at an offshore wind farm[J]. Wind Energy Science, 2017, 2(1): 229-239. DOI: 10.5194/wes-2-229-2017
|
[28] |
FLEMING P A, NING A, GEBRAAD P M O, et al. Wind plant system engineering through optimization of layout and yaw control[J]. Wind Energy, 2016, 19(2): 329-344.https://onlinelibrary.wiley.com/doi/am-pdf/ 10.1002/we.1836 DOI: 10.1002/we.1836
|
[29] |
BENSASON D, SIMLEY E, ROBERTS O, et al. Evaluation of the potential for wake steering for US land-based wind power plants[J]. Journal of Renewable and Sustainable Energy, 2021, 13(3): 033303. DOI: 10.1063/5.0039325
|
[30] |
SONG D R, YANG J, FAN X Y, et al. Maximum power extraction for wind turbines through a novel yaw control solution using predicted wind directions[J]. Energy Conversion and Management, 2018, 157: 587-599. DOI: 10.1016/j.enconman.2017.12.019
|
[31] |
SØRENSEN J N. Aerodynamic aspects of wind energy conversion[J]. Annual Review of Fluid Mechanics, 2011, 43(1): 427-448. DOI: 10.1146/annurev-fluid-122109-160801
|
[32] |
VERMEER L J, SØRENSEN J N, CRESPO A. Wind turbine wake aerodynamics[J]. Progress in Aerospace Sciences, 2003, 39(6-7): 467-510. DOI: 10.1016/S0376-0421(03)00078-2
|
[33] |
MEDICI D, IVANELL S, DAHLBERG J Å, et al. The upstream flow of a wind turbine: blockage effect[J]. Wind Energy, 2011, 14(5): 691-697. DOI: 10.1002/we.451
|
[34] |
BASTANKHAH M, PORTÉ-AGEL F. Wind tunnel study of the wind turbine interaction with a boundary-layer flow: Upwind region, turbine performance, and wake region[J]. Physics of Fluids, 2017, 29(6): 065105. DOI: 10.1063/1.4984078
|
[35] |
DASARI T, WU Y, LIU Y, et al. Near-wake behaviour of a utility-scale wind turbine[J]. Journal of Fluid Mechanics, 2019, 859: 204-246. DOI: 10.1017/jfm.2018.779
|
[36] |
HONG J R, TOLOUI M, CHAMORRO L P, et al. Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine[J]. Nature Communications, 2014, 5: 4216. DOI: 10.1038/ncomms5216
|
[37] |
CHAMORRO L P, PORTÉ-AGEL F. Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes: a wind-tunnel study[J]. Boundary-Layer Meteorology, 2010, 136(3): 515-533. DOI: 10.1007/s10546-010-9512-1
|
[38] |
POPE S B. Turbulent flows[J]. Measurement Science and Technology, 2001, 12(11). DOI: 10.1088/0957-0233/12/11/705
|
[39] |
BASTANKHAH M, PORTÉ-AGEL F. A new analytical model for wind-turbine wakes[J]. Renewable Energy, 2014, 70: 116-123. DOI: 10.1016/j.renene.2014.01.002
|
[40] |
AINSLIE J F. Calculating the flowfield in the wake of wind turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 27(1-3): 213-224. DOI: 10.1016/0167-6105(88)90037-2
|
[41] |
FANG J N, PORTÉ-AGEL F. Large-eddy simulation of very-large-scale motions in the neutrally stratified atmospheric boundary layer[J]. Boundary-Layer Meteorology, 2015, 155(3): 397-416. DOI: 10.1007/s10546-015-0006-z
|
[42] |
LARSEN T J, MADSEN H A, LARSEN G C, et al. Validation of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm[J]. Wind Energy, 2013, 16(4): 605-624. DOI: 10.1002/we.1563
|
[43] |
ESPAÑA G, AUBRUN S, LOYER S, et al. Wind tunnel study of the wake meandering downstream of a modelled wind turbine as an effect of large scale turbulent eddies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 101: 24-33. DOI: 10.1016/j.jweia.2011.10.011
|
[44] |
WU Y T, PORTÉ-AGEL F. Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations[J]. Boundary-Layer Meteorology, 2011, 138(3): 345-366. DOI: 10.1007/s10546-010-9569-x
|
[45] |
JENSEN N O. A note on wind turbine interaction[R]. Riso-M-2411. Risoe National Laboratory, Roskilde, Denmark, 1983: 16. https://backend.orbit.dtu.dk/ws/portalfiles/portal/55857682/ris_m_2411.pdf
|
[46] |
FRANDSEN S, BARTHELMIE R, PRYOR S, et al. Analytical modelling of wind speed deficit in large offshore wind farms[J]. Wind Energy, 2006, 9(1‐2): 39-53.https://onlinelibrary.wiley.com/doi/epdf/ 10.1002/we.189 DOI: 10.1002/we.189
|
[47] |
HANSEN M. Aerodynamics of wind turbines[M]. Routledge, 2015. DOI: 10.4324/9781315769981
|
[48] |
SHAMSODDIN S, PORTÉ-AGEL F. A model for the effect of pressure gradient on turbulent axisymmetric wakes[J]. Journal of Fluid Mechanics, 2018, 837: R3. DOI: 10.1017/jfm.2017.864
|
[49] |
ABKAR M, SØRENSEN J, PORTÉ-AGEL F. An analytical model for the effect of vertical wind veer on wind turbine wakes[J]. Energies, 2018, 11(7): 1838. DOI: 10.3390/en11071838
|
[50] |
BODINI N, ZARDI D, LUNDQUIST J K. Three-dimensional structure of wind turbine wakes as measured by scanning lidar[J]. Atmospheric Measurement Techniques, 2017, 10(8): 2881-2896. DOI: 10.5194/amt-10-2881-2017
|
[51] |
ARCHER C L, VASEL-BE-HAGH A, YAN C, et al. Review and evaluation of wake loss models for wind energy applications[J]. Applied Energy, 2018, 226: 1187-1207. DOI: 10.1016/j.apenergy.2018.05.085
|
[52] |
FLEMING P A, SCHOLBROCK A K, JEHU A, et al. Field-test results using a nacelle-mounted lidar for improving wind turbine power capture by reducing yaw misalignment[J]. Journal of Physics: Conference Series, 2014, 524: 012002. DOI: 10.1088/1742-6596/524/1/012002
|
[53] |
ZONG H H, PORTÉ-AGEL F. A point vortex transportation model for yawed wind turbine wakes[J]. Journal of Fluid Mechanics, 2020, 890: A8. DOI: 10.1017/jfm.2020.123
|
[54] |
BASTANKHAH M, PORTÉ-AGEL F. Experimental and theoretical study of wind turbine wakes in yawed conditions[J]. Journal of Fluid Mechanics, 2016, 806: 506-541. DOI: 10.1017/jfm.2016.595
|
[55] |
HOWLAND M F, BOSSUYT J, MARTÍNEZ-TOSSAS L A, et al. Wake structure in actuator disk models of wind turbines in yaw under uniform inflow conditions[J]. Journal of Renewable and Sustainable Energy, 2016, 8(4): 043301. DOI: 10.1063/1.4955091
|
[56] |
MARTÍNEZ-TOSSAS L A, ANNONI J, FLEMING P A, et al. The aerodynamics of the curled wake: a simplified model in view of flow control[J]. Wind Energy Science, 2019, 4(1): 127-138. DOI: 10.5194/wes-4-127-2019
|
[57] |
MARTÍNEZ-TOSSAS L A, KING J, QUON E, et al. The curled wake model: a three-dimensional and extremely fast steady-state wake solver for wind plant flows[J]. Wind Energy Science, 2021, 6(2): 555-570. DOI: 10.5194/wes-6-555-2021
|
[58] |
JIMÉNEZ Á, CRESPO A, MIGOYA E. Application of a LES technique to characterize the wake deflection of a wind turbine in yaw[J]. Wind Energy, 2010, 13(6): 559-572. DOI: 10.1002/we.380
|
[59] |
SHAPIRO C R, GAYME D F, MENEVEAU C. Modelling yawed wind turbine wakes: a lifting line approach[J]. Journal of Fluid Mechanics, 2018, 841: R1. DOI: 10.1017/jfm.2018.75
|
[60] |
QIAN G W, ISHIHARA T. A new analytical wake model for yawed wind turbines[J]. Energies, 2018, 11(3): 665. DOI: 10.3390/en11030665
|
[61] |
BRUGGER P, DEBNATH M, SCHOLBROCK A, et al. Lidar measurements of yawed-wind-turbine wakes: characterization and validation of analytical models[J]. Wind Energy Science, 2020, 5(4): 1253-1272. DOI: 10.5194/wes-5-1253-2020
|
[62] |
BRANLARD E, GAUNAA M. Cylindrical vortex wake model: skewed cylinder, application to yawed or tilted rotors[J]. Wind Energy, 2016, 19(2): 345-358. DOI: 10.1002/we.1838[LinkOut]
|
[63] |
VOLLMER L, STEINFELD G, HEINEMANN D, et al. Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: an LES study[J]. Wind Energy Science, 2016, 1(2): 129-141. DOI: 10.5194/wes-1-129-2016
|
[64] |
LISSAMAN P B S. Energy effectiveness of arbitrary arrays of wind turbines[J]. Journal of Energy, 1979, 3(6): 323-328. DOI: 10.2514/3.62441
|
[65] |
KATIC I, HØJSTRUP J, JENSEN N O. A simple model for cluster efficiency[C]//European wind energy association conference and exhibition. 1986, 1: 407-410. https://backend.orbit.dtu.dk/ws/portalfiles/portal/106427419/A_Simple_Model_for_Cluster_Efficiency_EWEC_86_.pdf
|
[66] |
NIAYIFAR A, PORTÉ-AGEL F. Analytical modeling of wind farms: a new approach for power prediction[J]. Energies, 2016, 9(9): 741. DOI: 10.3390/en9090741
|
[67] |
VOUTSINAS S, RADOS K, ZERVOS A. On the analysis of wake effects in wind parks[J]. Wind Engineering, 1990, 14(4): 204-219. https://www.jstor.org/stable/43749429
|
[68] |
ZONG H H, PORTÉ-AGEL F. A momentum-conserving wake superposition method for wind farm power prediction[J]. Journal of Fluid Mechanics, 2020, 889: A8. DOI: 10.1017/jfm.2020.77
|
[69] |
BASTANKHAH M, PORTÉ-AGEL F. A new miniature wind turbine for wind tunnel experiments. part I: design and performance[J]. Energies, 2017, 10(7): 908. DOI: 10.3390/en10070908
|
[70] |
FLEMING P, ANNONI J, CHURCHFIELD M, et al. A simulation study demonstrating the importance of large-scale trailing vortices in wake steering[J]. Wind Energy Science, 2018, 3(1): 243-255. DOI: 10.5194/wes-3-243-2018
|
[71] |
FLEMING P, KING J, DYKES K, et al. Initial results from a field campaign of wake steering applied at a commercial wind farm – Part 1[J]. Wind Energy Science, 2019, 4(2): 273-285. DOI: 10.5194/wes-4-273-2019
|
[72] |
FLEMING P, KING J, SIMLEY E, et al. Continued results from a field campaign of wake steering applied at a commercial wind farm – Part 2[J]. Wind Energy Science, 2020, 5(3): 945-958. DOI: 10.5194/wes-5-945-2020
|
[73] |
KING J, FLEMING P, KING R, et al. Control-oriented model for secondary effects of wake steering[J]. Wind Energy Science, 2021, 6(3): 701-714. DOI: 10.5194/wes-6-701-2021
|
[74] |
KNUDSEN T, BAK T, SVENSTRUP M. Survey of wind farm control—power and fatigue optimization[J]. Wind Energy, 2015, 18(8): 1333-1351. DOI: 10.1002/we.1760
|
[75] |
PARK J, LAW K H. A data-driven, cooperative wind farm control to maximize the total power production[J]. Applied Energy, 2016, 165: 151-165. DOI: 10.1016/j.apenergy.2015.11.064
|
[76] |
KIRCHNER-BOSSI N, PORTÉ-AGEL F. Wind farm area shape optimization using newly developed multi-objective evolutionary algorithms[J]. Energies, 2021, 14(14): 4185. DOI: 10.3390/en14144185
|
[77] |
GEBRAAD P M O, VAN WINGERDEN J W. Maximum power‐point tracking control for wind farms[J]. Wind Energy, 2015, 18(3): 429-447. DOI: 10.1002/we.1706
|
[78] |
GEBRAAD P, THOMAS J J, NING A, et al. Maximization of the annual energy production of wind power plants by optimization of layout and yaw-based wake control[J]. Wind Energy, 2017, 20(1): 97-107. DOI: 10.1002/we.1993
|
[79] |
BROGNA R, FENG J, SØRENSEN J N, et al. A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain[J]. Applied Energy, 2020, 259: 114189. DOI: 10.1016/j.apenergy.2019.114189
|
[80] |
KIRCHNER-BOSSI N, PORTÉ-AGEL F. Realistic wind farm layout optimization through genetic algorithms using a Gaussian wake model[J]. Energies, 2018, 11(12): 3268. DOI: 10.3390/en11123268
|
[81] |
STANFEL P, JOHNSON K, BAY C J, et al. Proof-of-concept of a reinforcement learning framework for wind farm energy capture maximization in time-varying wind[J]. Journal of Renewable and Sustainable Energy, 2021, 13(4): 043305. DOI: 10.1063/5.0043091
|
[82] |
SONG D R, FAN X Y, YANG J, et al. Power extraction efficiency optimization of horizontal-axis wind turbines through optimizing control parameters of yaw control systems using an intelligent method[J]. Applied Energy, 2018, 224: 267-279. DOI: 10.1016/j.apenergy.2018.04.114
|
[83] |
BERNARDONI F, CIRI U, ROTEA M A, et al. Identification of wind turbine clusters for effective real time yaw control optimization[J]. Journal of Renewable and Sustainable Energy, 2021, 13(4): 043301. DOI: 10.1063/5.0036640
|
[84] |
OZBAY A, TIAN W, YANG Z F, et al. Interference of wind turbines with different yaw angles of the upstream wind turbine[C]//42nd AIAA Fluid Dynamics Conference and Exhibit, New Orleans, Louisiana. Reston, Virginia: AIAA, 2012. doi: 10.2514/6.2012-2719
|
[85] |
HANSEN K S, BARTHELMIE R J, JENSEN L E, et al. The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm[J]. Wind Energy, 2012, 15(1): 183-196. DOI: 10.1002/we.512
|
[86] |
CAMPAGNOLO F, PETROVIĆ V, SCHREIBER J, et al. Wind tunnel testing of a closed-loop wake deflection controller for wind farm power maximization[J]. Journal of Physics: Conference Series, 2016, 753: 032006. https://iopscience.iop.org/article/ 10.1088/1742-6596/753/3/032006/pdf doi: 10.1088/1742-6596/753/3/032006
|
[87] |
LIN M, PORTÉ-AGEL F. Power maximization and fatigue-load mitigation in a wind-turbine array by active yaw control: an LES study[J]. Journal of Physics: Conference Series, 2020, 1618: 042036. DOI: 10.1088/1742-6596/1618/4/042036
|
[88] |
FLEMING P, ANNONI J, SCHOLBROCK A, et al. Full-scale field test of wake steering[J]. Journal of Physics: Conference Series, 2017, 854: 012013. DOI: 10.1088/1742-6596/854/1/012013
|
[89] |
GEBRAAD P M O, TEEUWISSE F W, VAN WINGERDEN J W, et al. Wind plant power optimization through yaw control using a parametric model for wake effects—a CFD simulation study[J]. Wind Energy, 2016, 19(1): 95-114. DOI: 10.1002/we.1822
|
[90] |
ROTT A, DOEKEMEIJER B, SEIFERT J K, et al. Robust active wake control in consideration of wind direction variability and uncertainty[J]. Wind Energy Science, 2018, 3(2): 869-882. DOI: 10.5194/wes-3-869-2018
|
[91] |
MENDEZ REYES H, KANEV S, DOEKEMEIJER B, et al. Validation of a lookup-table approach to modeling turbine fatigue loads in wind farms under active wake control[J]. Wind Energy Science, 2019, 4(4): 549-561. DOI: 10.5194/wes-4-549-2019
|
[92] |
KANEV S. Dynamic wake steering and its impact on wind farm power production and yaw actuator duty[J]. Renewable Energy, 2020, 146: 9-15. DOI: 10.1016/j.renene.2019.06.122
|
[93] |
KANEV S K, SAVENIJE F J, ENGELS W P. Active wake control: an approach to optimize the lifetime operation of wind farms[J]. Wind Energy, 2018, 21(7): 488-501. DOI: 10.1002/we.2173
|
[94] |
PARK J, KWON S, LAW K H. Wind farm power maximization based on a cooperative static game approach[C]//Proceedings of the SPIE, 2013, 8688. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid = 418924BF2676423839D98C004A37CDB7?doi = 10.1.1.300.3939&rep = rep1&type = pdf doi: 10.1117/12.2009618
|
[95] |
PARK J, LAW K H. Cooperative wind turbine control for maximizing wind farm power using sequential convex programming[J]. Energy Conversion and Management, 2015, 101: 295-316. DOI: 10.1016/j.enconman.2015.05.031
|
[96] |
PARK J, LAW K H. Bayesian ascent: a data-driven optimization scheme for real-time control with application to wind farm power maximization[J]. IEEE Transactions on Control Systems Technology, 2016, 24(5): 1655-1668. DOI: 10.1109/TCST.2015.2508007
|
[97] |
BAY C J, KING J, FLEMING P, et al. Unlocking the full potential of wake steering: implementation and assessment of a controls-oriented model[J]. Wind Energy Science Discussions, 2019: 1-20. DOI: 10.5194/wes-2019-19
|
[98] |
王浩, 柯世堂, 王同光. 台风过境全过程大型风力机风荷载特性[J]. 空气动力学学报, 2020, 38(5): 915-923. doi: 10.7638/kqdlxxb-2019.0108
WANG H, KE S, WANG T. Wind loads characteristic of large wind turbine considering typhoon transit process[J]. ACTA AERODYNAMICA SINICA, 2020, 38(5): 915-923. doi: 10.7638/kqdlxxb-2019.0108
|
[1] | MAO Meiliang, BAI Jinwei, MIN Yaobing, MA Yankai, JIANG Dingwu. Review on weighting functions of high-order nonlinear weighted methods[J]. ACTA AERODYNAMICA SINICA, 2024, 42(6): 1-14. DOI: 10.7638/kqdlxxb-2023.0187 |
[2] | WANG Yibin, MA Chenyang, LI Tong, ZHAO Ning, ZHU Chunling. Review of numerical studies on ship-helicopter coupled flowfield[J]. ACTA AERODYNAMICA SINICA, 2023, 41(3): 45-66. DOI: 10.7638/kqdlxxb-2022.0066 |
[3] | CHEN Xin, WANG Gang, YE Zheng Yin, WU Xiaojun. A review of uncertainty quantification methods for Computational Fluid Dynamics[J]. ACTA AERODYNAMICA SINICA, 2021, 39(4): 1-13. DOI: 10.7638/kqdlxxb-2021.0012 |
[4] | YANG Hailin, LIN Jianzhong. Review of turbulent fluctuation effect on nano-particle two-phase flow system[J]. ACTA AERODYNAMICA SINICA, 2021, 39(3): 109-120. DOI: 10.7638/kqdlxxb-2021.0030 |
[5] | WU Qin, GUO Yimeng, LIU Yunqing, WANG Guoyu. Review on the cavitating flow-induced vibrations[J]. ACTA AERODYNAMICA SINICA, 2020, 38(4): 746-760. DOI: 10.7638/kqdlxxb-2019.0177 |
[6] | ZHANG Qingyun, WANG Zhenghua, WEI Meng, LIN Wenjie. Review of high-lift devices design for amphibious aircraft[J]. ACTA AERODYNAMICA SINICA, 2019, 37(1): 19-32. DOI: 10.7638/kqdlxxb-2017.0110 |
[7] | SHEN Junmou, CHEN Xing, BI Zhixian, MA Handong. Review on experimental technology of high enthalpy shock tunnel[J]. ACTA AERODYNAMICA SINICA, 2018, 36(4): 543-554. DOI: 10.7638/kqdlxxb-2017.0165 |
[8] | ZHAI Jian, ZHANG Weiwei, WANG Huanling. Reviews of forebody vortex control method at high angles of attack[J]. ACTA AERODYNAMICA SINICA, 2017, 35(3): 354-367. DOI: 10.7638/kqdlxxb-2017.0018 |
[9] | ZHAO Huiyong, YI Miaorong. Review of design for forced-transition trip of hypersonic inlet[J]. ACTA AERODYNAMICA SINICA, 2014, 32(5): 623-627. DOI: 10.7638/kqdlxxb-2014.0095 |
[10] | TANG Ji-wei, HU Yu, SONG Bi-feng. Advances in the aerodynamics research of cylcoidal propeller[J]. ACTA AERODYNAMICA SINICA, 2013, 31(5): 676-684. DOI: 10.7638/kqdlxxb-2013.0054 |