徐国武, 杨云军, 周伟江. 一种卫星天线罩上升过程定常流动数值模拟[J]. 空气动力学学报, 2017, 35(1): 78-83. DOI: 10.7638/kqdlxxb-2015.0005
引用本文: 徐国武, 杨云军, 周伟江. 一种卫星天线罩上升过程定常流动数值模拟[J]. 空气动力学学报, 2017, 35(1): 78-83. DOI: 10.7638/kqdlxxb-2015.0005
Xu Guowu, Yang Yunjun, Zhou Weijiang. Steady numerical simulation of flow over an ascending satellite radome[J]. ACTA AERODYNAMICA SINICA, 2017, 35(1): 78-83. DOI: 10.7638/kqdlxxb-2015.0005
Citation: Xu Guowu, Yang Yunjun, Zhou Weijiang. Steady numerical simulation of flow over an ascending satellite radome[J]. ACTA AERODYNAMICA SINICA, 2017, 35(1): 78-83. DOI: 10.7638/kqdlxxb-2015.0005

一种卫星天线罩上升过程定常流动数值模拟

Steady numerical simulation of flow over an ascending satellite radome

  • 摘要: 在发射的主动上升段,由于天线罩突出卫星密封舱表面,天线罩将承受气流冲刷作用,为了准确设计天线罩抗力学环境,需要对上升段天线罩的受力情况进行详细计算和分析。根据具体的弹道参数,卫星上升过程中最大动压对应的马赫数约为1.4,基于此选择动压最大的马赫数段(Ma=1.0~1.8),采用数值模拟方法详细计算分析了定常状态下天线罩在不同马赫数、不同迎角下的气动力载荷和力矩载荷。结果表明:随着马赫数的增加,天线罩所承受的气动力载荷和力矩载荷均表现为先增大后减小,最大气动力载荷出现在Ma=1.2,大小约为435.5N,最大力矩载荷出现在Ma=1.4,大小约为14.5Nm;随着迎角的增加,天线罩气动力载荷呈现增大趋势,但增幅较小。在实际飞行中天线罩的局部或全部已经淹没在火箭弹身的边界层中,因此弹身的存在对天线罩的迎角效应会产生影响。

     

    Abstract: During rocket launching, the radome undergoes air flow swashing because of the protrusion of the satellite hermetic cabin surface. Inorder to accurately design mechanical environment over the radome, the aerodynamic loads of the ascending radome are required to be calculated and analyzed. The maximal dynamic pressure appears at a Mach number of 1.4 according to the detailed trajectory parameters. Based on this behavior, the Mach number range of Ma=1.0~1.8 was chosen for maximum dynamic pressure, and numerical method was used to calculate the power load and torque load of the radome at different Mach numbers and different angles of attack. The results indicate that the power load and torque load of the radome increase at the beginning, and then decrease at ascending branch with Ma=1.0~1.8. The power load achieves maximum value of about 435.5N at Ma=1.2, and the torque load achieves maximum value of about 14.5Nm at Ma=1.4. The power force grows slowly as the angle of attack increases. During actual flight, local or all of the radome is submerged at the boundary layer of the rocket body, so that the existence of the rocket body influences the angle of attack effect of the radome.

     

/

返回文章
返回