王浩, 徐晶磊. CKDO一方程模型计算高超声速横流转捩[J]. 空气动力学学报, 2023, 41(2): 75−82. doi: 10.7638/kqdlxxb-2021.0296
引用本文: 王浩, 徐晶磊. CKDO一方程模型计算高超声速横流转捩[J]. 空气动力学学报, 2023, 41(2): 75−82. doi: 10.7638/kqdlxxb-2021.0296
WANG H, XU J L. CKDO one-equation RANS simulation on transition of hypersonic cross flow[J]. Acta Aerodynamica Sinica, 2023, 41(2): 75−82. doi: 10.7638/kqdlxxb-2021.0296
Citation: WANG H, XU J L. CKDO one-equation RANS simulation on transition of hypersonic cross flow[J]. Acta Aerodynamica Sinica, 2023, 41(2): 75−82. doi: 10.7638/kqdlxxb-2021.0296

CKDO一方程模型计算高超声速横流转捩

CKDO one-equation RANS simulation on transition of hypersonic cross flow

  • 摘要: 高超声速横流转捩集湍流-激波作用、可压缩、横流、转捩等难题于一身,基于雷诺平均N-S方程(RANS)的转捩建模是一项挑战。本文采用CKDO-tran计算高超声速横流转捩的经典标模—HIFiRE-5,分可压缩性效应、雷诺数效应和迎角效应进行评估,发现:不考虑可压缩效应的KDO-tran模型无法给出准确的预测,而不引入特定转捩机理,CKDO-tran仍然可以预测一系列雷诺数工况的高超声速横流转捩。迎角0°时,CKDO-tran可以较好地预测出双肺叶转捩图像,迎角为4°时,CKDO-tran产生的转捩线提前,但给出了与实验相似的转捩图像,具有进一步开发的潜力。对4°工况进行来流湍流度敏感性的研究发现,随着来流湍流度减小,CKDO-tran产生的转捩线逐渐后移,并且转捩图像与实验的相似性逐渐减弱直至消失。 通过对迎角效应进行的分析,推测出来流-激波相互作用的建模是消除迎角效应的关键。

     

    Abstract: Hypersonic cross-flow transition problem contains turbulence-shock effects, compressibility, cross-flow, transition, and many other phenomenons. This work employs the CKDO-tran model to simulate HIFiRE-5 which is a canonical model for hypersonic cross-flow transition. The compressibility effect, Reynolds number effectand attack angle effectare studied. It is found that the KDO-tran model without considering the compressibility effect cannot give an accurate prediction on transition, while it can predict the hypersonic cross-flow transition at different Reynolds number conditions, without introducing a specific transition mechanism. When the angle of attack is 0°, CKDO-tran can better predict the transition image of the two lobes; when the angle of attack is 4°, the transition line yielded by CKDO-tran starts too early, but the transition pattern is similar to the measurements. Therefore, CKDO-tran model is promising and deserves further development. The sensitivity study of inflow turbulence intensity shows that, along with the decrement of inflow turbulence intensity, the predicted transition pattern gradually deviates from the true pattern for the 4° attack angle case. Finally, the attack angle effect is analyzed, and it is speculated that accurate modeling of the freestream turbulence-shock interaction is the key to eliminate the attack angle effect.

     

/

返回文章
返回