蔡佳, 黄河峡, 唐学斌, 等. 展向压力分布可控的前体/压缩面气动设计方法及其流动特性[J]. 空气动力学学报, 2022, 40(1): 66−76. doi: 10.7638/kqdlxxb-2021.0432
引用本文: 蔡佳, 黄河峡, 唐学斌, 等. 展向压力分布可控的前体/压缩面气动设计方法及其流动特性[J]. 空气动力学学报, 2022, 40(1): 66−76. doi: 10.7638/kqdlxxb-2021.0432
CAI J, HUANG H X, TANG X B, et al. Aerodynamic design method and flow features of forebody/compression surface with controlled lateral pressure distribution[J]. Acta Aerodynamica Sinica, 2022, 40(1): 66−76. doi: 10.7638/kqdlxxb-2021.0432
Citation: CAI J, HUANG H X, TANG X B, et al. Aerodynamic design method and flow features of forebody/compression surface with controlled lateral pressure distribution[J]. Acta Aerodynamica Sinica, 2022, 40(1): 66−76. doi: 10.7638/kqdlxxb-2021.0432

展向压力分布可控的前体/压缩面气动设计方法及其流动特性

Aerodynamic design method and flow features of forebody/compression surface with controlled lateral pressure distribution

  • 摘要: 为了诱导高超声速前体/压缩面近壁低能流形成强展向流动,提出了一种基于展向压力分布可控的高超声速前体/压缩面一体化气动设计方法。其基本原理为:给定外锥波后流场中某一个站位的展向压力分布,通过坐标变换求得对应点的空间位置,再基于流线追踪方法获得前体/压缩面的气动型面。研究结果表明:展向压力梯度是诱导前体/压缩面低能流排移的主导机制;在设计点(Ma = 7.0、H = 28 km)条件下,常规前体的展向压力梯度主要集中在一级压缩面,可在一级压缩面上形成偏转角3°左右的展向流动,但在后续压缩面上则展向流动较弱;相比常规前体,采用展向压力分布可控的前体,可以使0°~40°扇形角范围内的展向压力梯度增强7倍左右,并使一级压缩面上低能流偏转角增大5°左右,同时使二级和三级压缩面上展向压力梯度显著增加,综合效果可使诱导的低能流偏转角相比于常规前体的可增大7°左右,边界层厚度可降低超过20%,进气道扇形区内的总压恢复系数提高1.56%。

     

    Abstract: To induce the near-wall low-momentum fluids moving laterally, an aerodynamic design method of hypersonic forebody/compression surface with the controlled lateral surface pressure is proposed. The basic principle is that the lateral pressure distribution on one section after the external conical flow field is prescribed, and the spatial coordinates of the section can be derived inversely through the coordinate transform, then the forebody/compression surface can be obtained by the stream tracing method. The numerical results demonstrate that the lateral pressure gradient dominates the motion of the near-wall low-momentum fluids on the forebody/compression surface. For the conventional forebody/compression surface, it has strong lateral pressure gradient on the 1st stage of the forebody, which can induce a lateral flow with a deflection angle below 3° at the design point (Ma = 7.0 and H = 28 km). However, it almost has no lateral pressure gradient on the subsequent compression surfaces, and the lateral flow is also fairly weak. The controlled lateral pressure distribution forebody can intensify the lateral pressure gradient about 7 times within the sector-angle ranging from 0° to 40°, the deflection angle increases about 5° on the 1st stage of the forebody, and the lateral pressure gradient increases significantly with the deflection angle increased over 7° on the 2st and 3rd stages of the forebody. Consequently, the boundary layer thickness decreases about 20%, and the total-pressure recovery coefficient in the sector region of the inlet increases about 1.56%.

     

/

返回文章
返回