蝴蝶柔性扑翼前飞流固耦合特性

Fluid-structure interaction characteristics of butterfly flexible flapping wings in the forward flight

  • 摘要: 扑翼的刚度变化对昆虫的前飞气动特性与结构响应有着显著影响,对于昆虫扑翼的流固耦合研究,多聚焦于小型昆虫,而对于蝴蝶这种具有大翅膀面积、低展弦比特征的昆虫,相关研究稍显不足。为了研究不同柔性分布对仿蝴蝶扑翼前飞流固耦合特性的影响,本文基于真实的斑凤蝶外形和运动形式建立了相应的几何模型与运动学方程,发展了一种基于格子玻尔兹曼方法与有限元方法的流固耦合求解方法,并通过标模算例验证了方法的准确性。利用所发展的方法,分别比较各向同性柔性分布、各向异性柔性分布与刚性分布的蝴蝶翅膀在扑动过程中气动特性和结构响应方面的差异。结果表明,各向同性柔性扑翼的飞行性能显著强于各向异性扑翼与刚性扑翼,各向同性柔性翅膀扑动产生的涡结构更为复杂。因翅膀柔性而产生的翼尖二次流涡以及后翼翼尖涡形成了额外的低压区域,提升了柔性扑翼的飞行性能。本研究有望对扑翼飞行中涉及升力增强机制的涡动力学提供一些新的见解,从而为新型仿生微型扑翼飞行器的设计提供参考。

     

    Abstract: The stiffness of flapping wings has a significant impact on the aerodynamic characteristics and structural response of insects in forward flight. Numerous studies have investigatedthe fluid-structure interaction on small insects' flapping wings, while relevant studies on butterflies, particularly those with large and low-aspect-ratio wings, remain limited. Given this, we investigate the effects of different flexible distributions on the fluid-structure interaction characteristics of butterfly-like wings during forward flight. A geometric model and kinematic equations are established based on the real morphology and motion patterns of the Chilasa clytia. Additionally, a fluid-structure interaction solution method based on Lattice Boltzmann Method (LBM) and Finite Element Method (FEM) is developed and validated using benchmark cases. Using the developed method, the aerodynamic characteristics and structural response of isotropic flexible, anisotropic flexible, and rigid butterfly wings have been systematically analyzed. The results show that the isotropic flexible flapping wing exhibits enhanced flight performance compared to the anisotropic wing and rigid flapping wing because it induces more complex vortical structures including the wingtip secondary flow vortex (WSFV) and the hindwing tip vortex (HTV), which result in an additional low-pressure area. This study provides novel insights into the vortex dynamics involving the lift enhancement mechanism in flapping-wing flight and offers valuable guidance for the design and optimization of new bionic flapping-wing MAVs.

     

/

返回文章
返回