[1] |
YU L, MING X. Study on transient aerodynamic characteristics of parachute opening process[J]. ACTA Mechanic Sinica, 2007, 23(6): 627-633. [2] YU L, SHI X L, MING X. Numerical simulation of parachute during opening process[J]. ACTA Aeronautica et Astronautica Sinica, 2007, 28(1): 52-57. [3] PURVIS J W. Theoretical analysis of parachute inflation including fluid kinetics[R]. AIAA 81-1925, 1981. [4] STEIN K R, BENNEY R J, STEEVES E C. A computational model that couples aerodynamic structural dynamic behavior of parachutes during the opening process[R]. NASA ADA 264115, 1993. [5] KIM Y S, PESKIN C S. 3-D parachute simulation by the immersed boundary method[J].Computers and Fluids, 2009, 38: 1080-1090. [6] BEN T, ROLAND S. Finite mass simulation techniques in LS-DYNA[R]. AIAA 2011-2592, 2011. [7] KENJI T. Fluid structure interaction modeling of spacecraft parachutes for simulation-based design[J]. Journal of Applied Mechanics, 2012, 79: 1-9. [8] SOULI M, OUAHSINE A, LEWIN L. ALE formulation for fluid-structure interaction problems[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190: 659-675. [9] CASADEI F, HALLEUX J P, SALA A, et al. Transient fluid-structure interaction algorithms for large industrial applications[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 3081-3110. [10]CALVIN K L. Experimental investigation of full-scale and model parachute opening[R]. AIAA 1984-0820, 1984. [11]EWING E G, KNACKE T W, BIXBY H W. Recovery systems design guide[M]. Beijing: Aviation Industry Press, 1988. [12]AQUELET N, WANG J, TUTT B A, et al. Euler-lagrange coupling with deformable porous shells[C]. ASME Pressure Vessels and Piping Division Conference. Vancoucer BC Canada, 2006. [13]RONG W, CHEN X, CHEN G L. The study of the parachute opening load in low atmospheric density[J]. Spacecraft Recovery and Remote Sensing, 2006, 27(4): 7-11.
|