可压缩粘性流动笛卡尔网格虚拟单元方法研究

Numerical research of Cartesian based ghost cell method for compressible viscous flows

  • 摘要: 以二维高雷诺数可压缩粘性流动问题为背景,提出了一种全新的笛卡尔网格虚拟单元方法。基于壁面函数基本假设,构造了壁面函数-虚拟单元方法(WF-GCM),用于定义湍流壁面边界条件。引入参考点的概念计算虚拟单元上的基本变量与湍流变量值,定义了“非贴体”笛卡尔网格下的湍流壁面边界条件,并通过壁面函数模型修正近壁面单元与界面单元。基于自适应笛卡尔网格体系,采用发展的具有二阶精度的格心格式有限体积求解器,数值模拟了跨音速RAE2822翼型绕流问题与超音速圆柱绕流问题,计算结果与实验值吻合良好,显示了WF-GCM对高雷诺数可压缩粘性问题是有效的。

     

    Abstract: This work presents a new Cartesian-based ghost cell method for two-dimensional high Reynolds number compressible viscous flows. Based on the six fundamental assumptions used in the law of the wall, a wall function ghost cell method (WF-GCM) is developed to treat turbulent wall boundary conditions. Reference points are employed to compute primitive variables and turbulent properties at ghost cells. Meanwhile, the turbulent variables at the near wall cells and boundary cells are modified by using the wall function model. The turbulent boundary conditions are incorporated into a Reynolds average Navier-Stokes (RANS) finite volume solver that includes the SST k-ω turbulence model. Finally, the transonic flow past a RAE2822 airfoil and supersonic flow past a circle cylinder are simulated with adaptive Cartesian grid. Good agreement with the experimental datas shows the accuracy and efficiency of the presented WF-GCM.

     

/

返回文章
返回