高阶精度方法下的湍流生成项对低速流动数值模拟的影响研究

High-order numerical analysis of the effect of turbulent production terms on low-speed numerical simulation

  • 摘要: 基于雷诺平均的Navier-Stokes方程和结构网格技术, 采用五阶空间离散精度的WCNS格式, 开展了SST两方程模型不同湍流生成项对低速流动数值模拟的计算分析。主要目的是为高阶精度格式在复杂外形上的应用提供技术支撑。计算模型包含了低速NLR7301两段翼型和Trap Wing高升力构型, 研究内容主要包括不同湍流生成项对收敛历程、边界层湍流粘性系数分布、边界层速度分布、压力系数分布、气动特性的影响。在与试验数据对比的基础上, 计算结果表明:对于低速二维流动, 不同湍流生成项对收敛历程有比较明显的影响, 对附面层湍流粘性系数分布和速度型影响不明显, 不同湍流生成项主要影响主翼前缘的吸力峰值, 进而影响升力系数和压差阻力系统;对于低速三维流动, 不同湍流生成项对低速流动的收敛特性影响不明显, 对翼梢涡的模拟精度有比较明显的影响, 进而影响翼梢站位的压力分布和总体气动特性。

     

    Abstract: Based on the Reynolds-averaged Navier-Stokes(RANS) equations and structured grid technology, the effect of different production terms of SST turbulence model on simulation results of low-speed problems is analyzed numerically with fifth-order weighted compact nonlinear scheme(WCNS). The main purpose of present work is to provide technical support for the application of high-order difference schemes in complex configurations. The studied models include low-speed NLR7301 two-element airfoil and Trap wing configuration, the research work contains the influence of different production terms of SST turbulence model on convergence history, the distribution of turbulent viscosity and velocity in boundary layer, pressure coefficients and aerodynamic characters. Compared with experimental data, the numerical results indicate that for low-speed two-dimensional flow, different production terms affect the convergence history obviously, whereas have little influence on turbulent viscosity and velocity distribution in boundary layer. For the low-speed two-dimensional flow, different production terms affect the suction in the leading edge ,which results in the variation of lift coefficient and pressure-drag coefficient. For low-speed three-dimensional flow, different production terms have little influence on the convergence history, whereas affect the numerical accuracy of the tip vortex obviously, and then, affect the pressure distribution on the span wing section near the wing tip and aerodynamic characters.

     

/

返回文章
返回