尾缘襟翼长度对风力机翼型气动性能的影响

韩中合, 贾亚雷, 李恒凡, 朱霄珣, 董帅

韩中合, 贾亚雷, 李恒凡, 朱霄珣, 董帅. 尾缘襟翼长度对风力机翼型气动性能的影响[J]. 空气动力学学报, 2015, 33(6): 835-842. DOI: 10.7638/kqdlxxb-2015.0021
引用本文: 韩中合, 贾亚雷, 李恒凡, 朱霄珣, 董帅. 尾缘襟翼长度对风力机翼型气动性能的影响[J]. 空气动力学学报, 2015, 33(6): 835-842. DOI: 10.7638/kqdlxxb-2015.0021
Han Zhonghe, Jia Yalei, Li Hengfan, Zhu Xiaoxun, Dong Shuai. The effect of trailing edge flaps length on aerodynamics of wind turbine airfoil[J]. ACTA AERODYNAMICA SINICA, 2015, 33(6): 835-842. DOI: 10.7638/kqdlxxb-2015.0021
Citation: Han Zhonghe, Jia Yalei, Li Hengfan, Zhu Xiaoxun, Dong Shuai. The effect of trailing edge flaps length on aerodynamics of wind turbine airfoil[J]. ACTA AERODYNAMICA SINICA, 2015, 33(6): 835-842. DOI: 10.7638/kqdlxxb-2015.0021

尾缘襟翼长度对风力机翼型气动性能的影响

基金项目: 国家自然科学基金(11302076);中央高校基本科研业务专项资金(2014XS80)
详细信息
    作者简介:

    韩中合(1964-),男,河北衡水人,教授,博士生导师,研究方向为:热力设备状态监测与故障诊断、两相流计算与测量、叶轮机械CFD与优化设计研究.E-mail:han_zhonghe@163.com

    通讯作者:

    贾亚雷,(1975-),男,河北博野人,副教授,博士研究生,主要研究方向为:风力机叶片设计及优化研究.E-mail:yalei_jia@163.com

  • 中图分类号: V211.41;V211.3

The effect of trailing edge flaps length on aerodynamics of wind turbine airfoil

  • 摘要: 针对尾缘襟翼长度对风力机翼型气动性能的影响,分别以S809翼型与DU翼型为研究对象,设计了6种襟翼长度的襟翼模型,襟翼向翼型压力面偏转角为10°,襟翼与翼型主体之间为均匀1mm间隙,利用AUTOCAD对各襟翼长度模型进行几何建模。采用计算流体力学软件Fluent 14.0对各襟翼模型进行不同攻角下的气动性能计算,对翼型边界附近流场及压力系数等进行了分析比较。结果表明:尾缘襟翼长度对翼型的气动性能有较大的影响,襟翼长度不仅对襟翼附近的流场产生影响,对整个翼型的流场都有较大影响;带襟翼模型升力系数比无襟翼模型大大提高,且在一定攻角范围内随着襟翼长度增加,升力系数逐渐增大;带襟翼模型阻力系数比无襟翼模型翼型大,且在一定攻角范围内随襟翼长度增大阻力系数也增大;带襟翼模型升阻比在一定范围内比无襟翼模型大。
    Abstract: The goal of the study was to investigate the effect of trailing edge flaps length on aerodynamics of wind turbine airfoil, airfoil S809 and DU series airfoil were selected as research objects, and six kinds of flap length airfoil model were designed, have the same chord length of 1000mm, and the same deflect angle of 10°, the gap between the flap and the main airfoil body was optimized to make the width of gap as even 1mm. The grids near the trailing edge are refined, and the grid independence is verified through the comparison of the calculated results with grid scales three, which a 148000 grid model was selected for further calculation. The k-ω two equation turbulence model for commercial software Fluent was used here to calculate the aerodynamics of the flap models at different attack angles, the streamline, pressure contour and pressure coefficient near border of airfoil were analyzed and compared. The result shows that the flaps length of airfoil with trailing edge flaps has great effect on the aerodynamic performance of the airfoil, not only the streamline near the flap is influenced but also the whole streamline near the airfoil are influenced. The lift coefficient of airfoil with flap is bigger than that of airfoil without flap, and the lift coefficient increases with the increasing of flap length. The drag coefficient of flap model is also bigger than that of airfoil without flap, and the drag coefficient of flap model also increases with the increasing of angle of attack. The lift to drag ratio is bigger than that of airfoil without flap at some range of angles of attack.
  • [1] Abdelrahman A, Johnson D A. Development of a wind turbine test rig and rotor for trailing edge flap investigation:static flap angles case[C]//Journal of Physics:Conference Series. IOP Publishing, 2014, 524(1):2-3.
    [2] Andersen P B, Henriksen L, Gaunaa M, et al. Deformable trailing edge flaps for modern megawatt wind turbine controllers using strain gauge sensors[J]. Wind Energy, 2010, 13(2):193-206.
    [3] Yu W, Zhang M M, Xu J Z. Effect of smart rotor control using a deformable trailing edge flap on load reduction under normal and extreme turbulence[J]. Energies, 2012, 5(9):3608-3626.
    [4] Castaignet D, Barlas T, Buhl T, et al. Full-scale test of trailing edge flaps on a Vestas V27 wind turbine:active load reduction and system identification[J]. Wind Energy, 2014, 17(4):549-564.
    [5] Pastrikakis V A, Steijl R, Barakos G N, et al. Computational aeroelastic analysis of a hovering W3 sokol blade with Gurney flap[J]. Journal of Fluids and Structures, 2015, 53:96-111.
    [6] Wang J J, Li Y C. The effects of Gurney flap on double delta wing aerodynamic performance in low speed wind-tunnel test[J]. Acta Aerodynamica sinica, 2007, 25(2):216-219.(in Chinese)王晋军,李亚臣. Gurney襟翼对双三角翼气动特性影响的低速风洞实验研究[J].空气动力学学报, 2007, 25(2):216-219.
    [7] Xiao T, Daichin. The experimental study of aerodynamics and flow structures of a wing with Gurney flaps in ground effect. Acta Aerodynamica sinica, 2013, 31(5):572-578. (in Chinese)肖涛,代钦. Gurney襟翼对机翼地面效应气动特性和流动结构的影响实验研究[J].空气动力学学报, 2013, 31(5):572-578.
    [8] Karthikeyan N, Murugavel K K, Kumar S A, et al. Review of aerodynamic developments on small horizontal axis wind turbine blade[J]. Renewable and Sustainable Energy Reviews, 2015, 42:801-822.
    [9] Li R N, Yuan S K, Zhao Z Q. Research on the effect of trail-edge improvement on airfoils performance for wind turbine[J]. Acta Aerodynamica Sinica, 2012, 30(5):646-652. (in Chinese)李仁年,袁尚科,赵子琴.尾缘改型对风力机翼型性能的影响研究[J].空气动力学学报, 2012, 30(5):646-652.
    [10] Zhang X, Li W, Xing J Z, et al. Effects of geometrical parameters of improved Gurney flap on airfoil aerodynamic characteristics[J]. Transaction of the Chinese Society for Agricultural Machinery, 2012, 43(012):97:101. (in Chinese)张旭,李伟,邢静忠,等.改进Gurney襟翼几何参数对翼型气动特性的影响[J].农业机械学报, 2012, 43(012):97-101.
    [11] [KG1.1mm]Troldborg N. Computational study of the Risø-B1-18 airfoil with a hinged flap providing variable trailing edge geometry[J]. Wind Engineering, 2005, 29(2):89-114.
    [12] Li C F, Xu Y, Xu J Z. Influence of slot on wind turbine airfoil with trailing edge flaps[J]. Journal Engineering Thermophysics, 2011, 32(11):1851-1854. (in Chinese)李传峰,徐宇,徐建中.凹槽对风力机叶片尾缘襟翼性能的影响[J].工程热物理学报, 2011, 32(11):1851-1854.
    [13] Van Dam C P, Nakafuji D Y, Bauer C, et al. Computational design and analysis of a microtab based aerodynamic loads control system for lifting surfaces[C]//Micromachining and Microfabrication. International Society for Optics and Photonics, 2003:28-39.
    [14] Wang R, Xia P Q. Control of helicopter rotor blade dynamic stall and hub vibration loads by multiple trailing edge flaps[J]. Chinese Journal of Aeronautics, 2013, 34(5):1083-1091. (in Chinese)王荣,夏品奇.多片后缘小翼对直升机旋翼桨叶动态失速及桨毂振动载荷的控制[J].航空学报, 2013, 34(5):1083-1091.
    [15] Lackner M A, van Kuik G. A comparison of smart rotor control approaches using trailing edge flaps and individual pitch control[J]. Wind Energy, 2010, 13(2-3):117-134.
    [16] Han Z H, Jia Y L, Li H F, et al. Aerodynamic performance of discrete trailing edge flaps of wind turbine airfoil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(20):58-64. (in Chinese)韩中合,贾亚雷,李恒凡,等.风力机分离式尾缘襟翼气动性能[J].农业工程学报, 2014, 30(20):58-64.
    [17] Li Y R, Li R N, Wang X Y, et al. Effects of the calculation models with different dimension on the aerodynamic performance prediction for wind turbine airfoil[J]. Transaction of the Chinese Society for Agricultural Machinery, 2011, 42(2):115-119. (in Chinese)李银然,李仁年,王秀勇,等.计算模型维数对风力机翼型气动性能预测的影响[J].农业机械学报, 2011, 42(2):115-119.
    [18] Hand M M, Simms D A, Fingersh L J, et al. Unsteady aerodynamics experiment phase VI:wind tunnel test configurations and available data campaigns[M]. Colorado:National Renewable Energy Laboratory, 2001.
    [19] Somers D M. Design and experimental results of S809 airfoils[M]. Colorado:National Renewable Energy Laboratory, 1989.
计量
  • 文章访问数:  272
  • HTML全文浏览量:  15
  • PDF下载量:  892
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-09
  • 修回日期:  2015-07-30
  • 网络出版日期:  2021-01-07
  • 刊出日期:  2015-12-24

目录

    /

    返回文章
    返回