小展弦比飞翼标模纵航向气动特性低速实验研究

吴军飞, 秦永明, 黄湛, 魏忠武, 贾毅

吴军飞, 秦永明, 黄湛, 魏忠武, 贾毅. 小展弦比飞翼标模纵航向气动特性低速实验研究[J]. 空气动力学学报, 2016, 34(1): 125-130. DOI: 10.7638/kqdlxxb-2015.0093
引用本文: 吴军飞, 秦永明, 黄湛, 魏忠武, 贾毅. 小展弦比飞翼标模纵航向气动特性低速实验研究[J]. 空气动力学学报, 2016, 34(1): 125-130. DOI: 10.7638/kqdlxxb-2015.0093
Wu Junfei, Qin Yongming, Huang Zhan, Wei Zhongwu, Jia Yi. Low speed experiment on longitudinal and lateral aerodynamic characteristics of the low aspect ratio flying wing calibration model[J]. ACTA AERODYNAMICA SINICA, 2016, 34(1): 125-130. DOI: 10.7638/kqdlxxb-2015.0093
Citation: Wu Junfei, Qin Yongming, Huang Zhan, Wei Zhongwu, Jia Yi. Low speed experiment on longitudinal and lateral aerodynamic characteristics of the low aspect ratio flying wing calibration model[J]. ACTA AERODYNAMICA SINICA, 2016, 34(1): 125-130. DOI: 10.7638/kqdlxxb-2015.0093

小展弦比飞翼标模纵航向气动特性低速实验研究

详细信息
    作者简介:

    吴军飞(1984-),工程师,主要从事实验空气动力学研究.E-mail:wujunfei2002@163.com

  • 中图分类号: V211.7

Low speed experiment on longitudinal and lateral aerodynamic characteristics of the low aspect ratio flying wing calibration model

  • 摘要: 对小展弦比飞翼气动布局外形,通过常规测力风洞实验方法得到其纵向气动特性和偏航控制特性,在分析其气动特性后,选取典型的状态采用PIV实验方法对其流动机理进行研究,研究表明小展弦比飞翼在较小的迎角下即出现前缘分离涡,随着迎角的增大,前缘分离涡强度增大,且逐渐往机体对称面方向移动,随着迎角进一步增大,分离涡变得不稳定,涡核开始摆动,最终破裂,破裂位置从后缘开始,逐渐前移。对小展弦比飞翼气动布局飞机的控制难点偏航控制进行研究,结果表明该飞翼布局模型在实验迎角范围内偏航方向是静稳定的,在小迎角下具有可操纵性,迎角大于6°后嵌入面处于破裂的前缘涡尾迹之中,操纵性降低。
    Abstract: longitudinal and lateral aerodynamic characteristics of the low aspect ratio flying wing calibration model are investigated in a low speed wind tunnel. Normal force measuring experiment is conducted to gain the longitudinal aerodynamic characteristics and yaw control characteristics, and the PIV test is also conducted to investigate the flow mechanism of the low aspect ratio flying wing. The results indicate that the leading-edge separation vortex appears on the wing's spine surface when the attack angle is at 6 degree. The vortex intensity increases and the vortex core shifts to the symmetric plane of flying wing with the increase of attack angle. Increasing the attack angle further, the vortex core becomes unsteady and begins to oscillate, finally break entirely. The broken position shifts from the ending edge to the leading edge. Yaw control characteristics of low aspect ratio flying wing is also studied in this paper. The results indicate that the flying wing is static stabile at the test attack angle. When the attack angle is less than 6 degree, it is controllable in yaw direction. And when attack angle is more than 6 degree, the yaw control ability decreases because the control surface may lays in the wake region of broken leading-edge vortex.
  • [1] Ma C, Li L, Wang L X. Design method of controllability of low aspect-ratio flying wing configuration combat aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):788-794.(in Chinese)马超, 李林, 王立新. 小展弦比飞翼布局作战飞机可控性设计方法[J]. 航空学报, 2008, 29(4):788-794.
    [2] Fang B R. Aircraft aerodynamic layout design[M]. Beijing:Aviation Industry Press, 1997. 方宝瑞. 飞机气动布局设计[M]. 北京:航空工业出版社, 1997.
    [3] Addington G A, Myatt J H. Control surface deflection effects on the innovative control effectors(ICE 101) design[R]. AFRL-VA-WP-T R-2000-3027.
    [4] Walker L A. Flight testing the X-36-the test pilot's per-spective[R]. NASA CR-198058, 1997.
    [5] Gillard W J, Dorsett K M. Directional control for tailless aircraft using all moving wing tips[R]. AIAA-97-3487, 1997.
    [6] Gu S F. Aircraft conceptual design[M]. Beijing:Beijing University of Aeronautics and Astronautics Press. 2001:397. 顾诵芬. 飞机总体设计[M]. 北京:北京航空航天大学出版社, 2001:397.
    [7] Ma S H, Wu C F, Chen H M. Study on stability and manoeuvrability of flying wing aircraft[J]. Flight dynamics, 2006, 24(3):17-21.(in Chinese)马松辉, 吴成富, 陈怀民. 飞翼飞机稳定性与操纵性研究[J]. 飞行力学, 2006, 24(3):17-21.
    [8] Gregory A A, James H M. Control-surface deflection effects on aerodynamic response nonlinearities[R]. AIAA 2000-4107.
    [9] Shan J X, Huang Y, Su J C, et al. Effect of the novel embedded control surfaces on direction control characteristic of low-aspect-ratio flying-wing configuration[J]. Acta Aerodynamica Sinica, 2015, 33(3):296-301.(in Chinese)单继祥, 黄勇, 苏继川, 等. 小展弦比飞翼布局新型嵌入面航向控制特性研究[J]. 空气动力学学报, 2015, 33(3):296-301.
    [10] Su J C, Huang Y, Zhong S D, et al. Research on flow characteristics of low-aspect-ratio flying-wing at transonic speed[J]. Acta Aerodynamica Sinica, 2015, 33(3):307-312.(in Chinese)苏继川, 黄勇, 钟世东, 等. 小展弦比飞翼跨声速典型流动特性研究[J]. 空气动力学学报, 2015, 33(3):307-312.
    [11] Li Z J, Ma D L. Control characteristics analysis of drag yawing control devices of flying wing configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(5):695-700.(in Chinese)李忠剑, 马东立. 飞翼布局阻力类偏航操纵装置操纵特性分析[J]. 北京航空航天大学学报, 20014, 40(5):695-700.
    [12] Roman D, Allen J B, Liebeck R H. Aerodynamic design challenges of the blended-wing-body subsonic transport[R]. AIAA 2000-4335.
    [13] Bolsunovsky A L, Buzoverya N P, Gurevich B I, et al. Flying wing-problems and decisions[J]. Aircraft Design, 2001, 4:193-219.
    [14] Esteban S. Static and dynamic analysis of an unconventional plane-flying wing[R]. AIAA 2001-4010.
    [15] Dmitriev V G, Denisov V E, Gurevich B I, et al. The flying wing concept-chances and risks[R]. AIAA 2003-2887.
  • 期刊类型引用(4)

    1. 范一鸣,李响,张后军. 含冗余控制面飞行器配平优化设计与性能分析. 空气动力学学报. 2024(03): 102-110 . 本站查看
    2. 王延灵,沈彦杰,卜忱,冯帅,陈昊,唐文威. 小展弦比飞翼布局大迎角气动特性研究. 气动研究与试验. 2023(03): 64-69 . 百度学术
    3. 陈浩,华如豪,袁先旭,唐志共,毕林. 基于自适应笛卡尔网格的飞翼布局流动模拟. 航空学报. 2022(08): 394-405 . 百度学术
    4. 张同鑫,赵轲,李权. 飞翼布局无人机腹襟翼气动设计研究. 空气动力学学报. 2019(01): 75-82 . 本站查看

    其他类型引用(8)

计量
  • 文章访问数:  240
  • HTML全文浏览量:  10
  • PDF下载量:  628
  • 被引次数: 12
出版历程
  • 收稿日期:  2015-07-20
  • 修回日期:  2015-10-22
  • 网络出版日期:  2021-01-07
  • 刊出日期:  2016-01-24

目录

    /

    返回文章
    返回