Abstract:
Near-space hypersonic flow usually has concomitant circumstances with multiple complex physical, chemical and fluid mechanicsuch as real gas effects, rarefied effects, and viscous interactions. Regarding the topic of multi-physics phenomena in the hypersonic flow past complex lift-body configurations, the studies on the hypersonic aerodynamic characteristics of American shuttle orbiter were briefly reviewed for the phase of pre-flight and post-flight, respectively. For the pre-flight phase, the studies were introduced with respect to extrapolating parameter of the aerodynamic data and the uncertainty quantity. Hypersonic viscous parameter was employed as the extrapolating factor of the aerodynamic characteristics, and the computational method was introduced for the uncertainty quantity of the aerodynamic forces. The introduction of the post-flight phase included the comparison between the predicted data and the flight tests, the longitudinal trim anomaly analysis, and the extrapolating method for the flight data. The preliminary method, extrapolating the wind-tunnel data to the flight data, was surveyed. The influence of the real gas effects was identified on the aerodynamic characteristics; however, it is still uncertain that the real gas effects have influence on the control surfaces efficiency. Finally, four issues, i.e., the probability of avoiding longitudinal trim anomaly, the differences of the body-flap efficiency between the calculations and the experiments, the studies of the aerodynamics uncertainty with various approaches, and the establishment of a sharing system for data from the flight tests, the tunnel tests and the CFD are discussed. In addition, it is mentioned in the early studies that the multi-physics phenomena co-exist during the space shuttle reentry, and it is difficult to discern the individual effect on the aerodynamic characteristics under the research conditions at that time. In the late studies, it has not been focused on that the coupled effects of these phenomena on the aerodynamics characteristics of the space shuttle. This lack of investigations provides a further research field for the studies of multi-physics phenomena.